Abstract
Post-acute COVID-19 syndrome (PCS) is highly prevalent. Critically ill patients requiring intensive care unit (ICU) admission are at a higher risk of developing PCS. The mechanisms underlying PCS are still under investigation and may involve microvascular damage in the brain. Cerebral misery perfusion, characterized by reduced cerebral blood flow (CBF) and elevated oxygen extraction fraction (OEF) in affected brain areas, has been demonstrated in cerebrovascular diseases such as carotid occlusion and stroke. This pilot study aimed to examine whether COVID-19 ICU survivors exhibited regional misery perfusion, indicating cerebral microvascular damage. In total, 7 COVID-19 ICU survivors (4 female, 20–77 years old) and 19 age- and sex-matched healthy controls (12 female, 22–77 years old) were studied. The average interval between ICU admission and the MRI scan was 118.6 ± 30.3 days. The regional OEF was measured using a recently developed technique, accelerated T2-relaxation-under-phase-contrast MRI, while the regional CBF was assessed using pseudo-continuous arterial spin labeling. COVID-19 ICU survivors exhibited elevated OEF (β = 5.21 ± 2.48%, p = 0.047) and reduced relative CBF (β = −0.083 ± 0.025, p = 0.003) in the frontal lobe compared to healthy controls. In conclusion, misery perfusion was observed in the frontal lobe of COVID-19 ICU survivors, suggesting microvascular damage in this critical brain area for high-level cognitive functions that are known to manifest deficits in PCS. Physiological biomarkers such as OEF and CBF may provide new tools to improve the understanding and treatment of PCS.
Original language | English (US) |
---|---|
Article number | 94 |
Journal | Brain Sciences |
Volume | 14 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2024 |
Keywords
- COVID-19
- ICU
- cerebral blood flow
- cerebral microvascular damage
- misery perfusion
- oxygen extraction fraction
- post-acute COVID-19 syndrome
ASJC Scopus subject areas
- General Neuroscience