Abstract
Dietary restriction (DR; reduced calorie intake) increases the lifespan of rodents and increases their resistance to cancer, diabetes and other age-related diseases. DR also exerts beneficial effects on the brain including enhanced learning and memory and increased resistance of neurons to excitotoxic, oxidative and metabolic insults. The mechanisms underlying the effects of DR on neuronal plasticity and survival are unknown. In the present study we show that levels of brain-derived neurotrophic factor (BDNF) are significantly increased in the hippocampus, cerebral cortex and striatum of mice maintained on an alternate day feeding DR regimen compared to animals fed ad libitum. Damage to hippocampal neurons induced by the excitotoxin kainic acid was significantly reduced in mice maintained on DR, and this neuroprotective effect was attenuated by intraventricular administration of a BDNF-blocking antibody. Our findings show that simply reducing food intake results in increased levels of BDNF in brain cells, and suggest that the resulting activation of BDNF signaling pathways plays a key role in the neuroprotective effect of DR. These results bolster accumulating evidence that DR may be an effective approach for increasing the resistance of the brain to damage and enhancing brain neuronal plasticity.
Original language | English (US) |
---|---|
Pages (from-to) | 619-626 |
Number of pages | 8 |
Journal | Journal of Neurochemistry |
Volume | 76 |
Issue number | 2 |
DOIs | |
State | Published - 2001 |
Externally published | Yes |
Keywords
- Apoptosis
- Brain-derived neurotrophic factor
- Caloric restriction
- Cerebral cortex
- Epileptic seizures
- Glutamate
ASJC Scopus subject areas
- Biochemistry
- Cellular and Molecular Neuroscience