Brain abnormality segmentation based on l 1-norm minimization

Ke Zeng, Guray Erus, Manoj Tanwar, Christos Davatzikos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We present a method that uses sparse representations to model the inter-individual variability of healthy anatomy from a limited number of normal medical images. Abnormalities in MR images are then defined as deviations from the normal variation. More precisely, we model an abnormal (pathological) signal y as the superposition of a normal part ~y that can be sparsely represented under an example-based dictionary, and an abnormal part r. Motivated by a dense error correction scheme recently proposed for sparse signal recovery, we use l1- norm minimization to separate ~y and r. We extend the existing framework, which was mainly used on robust face recognition in a discriminative setting, to address challenges of brain image analysis, particularly the high dimensionality and low sample size problem. The dictionary is constructed from local image patches extracted from training images aligned using smooth transformations, together with minor perturbations of those patches. A multi-scale sliding-window scheme is applied to capture anatomical variations ranging from fine and localized to coarser and more global. The statistical significance of the abnormality term r is obtained by comparison to its empirical distribution through cross-validation, and is used to assign an abnormality score to each voxel. In our validation experiments the method is applied for segmenting abnormalities on 2-D slices of FLAIR images, and we obtain segmentation results consistent with the expert-defined masks.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2014
Subtitle of host publicationImage Processing
PublisherSPIE
ISBN (Print)9780819498274
DOIs
StatePublished - 2014
EventMedical Imaging 2014: Image Processing - San Diego, CA, United States
Duration: Feb 16 2014Feb 18 2014

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume9034
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2014: Image Processing
Country/TerritoryUnited States
CitySan Diego, CA
Period2/16/142/18/14

Keywords

  • Abnormality segmentation
  • Brain MRI
  • Convex optimization
  • Sparse representation

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Brain abnormality segmentation based on l 1-norm minimization'. Together they form a unique fingerprint.

Cite this