TY - JOUR
T1 - BM-Map
T2 - an efficient software package for accurately allocating multireads of RNA-sequencing data.
AU - Yuan, Yuan
AU - Norris, Clift
AU - Xu, Yanxun
AU - Tsui, Kam Wah
AU - Ji, Yuan
AU - Liang, Han
N1 - Funding Information:
This study was supported by grants from National Institutes of Health CA143883 (H.L.), CA132897 (Y.J.) and CA016672 (H.L. and Y.J.), UTMDACC - G. S. Hogan Gastrointestinal Research Fund (H.L.) and the Lorraine Dell Program in Bioinformatics for Personalization of Cancer Medicine. This article has been published as part of BMC Genomics Volume 13 Supplement 8, 2012: Proceedings of The International Conference on Intelligent Biology and Medicine (ICIBM): Genomics. The full contents of the supplement are available online at http://www.biomedcentral.com/ bmcgenomics/supplements/13/S8.
PY - 2012
Y1 - 2012
N2 - RNA sequencing (RNA-seq) has become a major tool for biomedical research. A key step in analyzing RNA-seq data is to infer the origin of short reads in the source genome, and for this purpose, many read alignment/mapping software programs have been developed. Usually, the majority of mappable reads can be mapped to one unambiguous genomic location, and these reads are called unique reads. However, a considerable proportion of mappable reads can be aligned to more than one genomic location with the same or similar fidelities, and they are called "multireads". Allocating these multireads is challenging but critical for interpreting RNA-seq data. We recently developed a Bayesian stochastic model that allocates multireads more accurately than alternative methods (Ji et al. Biometrics 2011). In order to serve a greater biological community, we have implemented this method in a stand-alone, efficient, and user-friendly software package, BM-Map. BM-Map takes SAM (Sequence Alignment/Map), the most popular read alignment format, as the standard input; then based on the Bayesian model, it calculates mapping probabilities of multireads for competing genomic loci; and BM-Map generates the output by adding mapping probabilities to the original SAM file so that users can easily perform downstream analyses. The program is available in three common operating systems, Linux, Mac and PC. Moreover, we have built a dedicated website, http://bioinformatics.mdanderson.org/main/BM-Map, which includes free downloads, detailed tutorials and illustration examples. We have developed a stand-alone, efficient, and user-friendly software package for accurately allocating multireads, which is an important addition to our previous methodology paper. We believe that this bioinformatics tool will greatly help RNA-seq and related applications reach their full potential in life science research.
AB - RNA sequencing (RNA-seq) has become a major tool for biomedical research. A key step in analyzing RNA-seq data is to infer the origin of short reads in the source genome, and for this purpose, many read alignment/mapping software programs have been developed. Usually, the majority of mappable reads can be mapped to one unambiguous genomic location, and these reads are called unique reads. However, a considerable proportion of mappable reads can be aligned to more than one genomic location with the same or similar fidelities, and they are called "multireads". Allocating these multireads is challenging but critical for interpreting RNA-seq data. We recently developed a Bayesian stochastic model that allocates multireads more accurately than alternative methods (Ji et al. Biometrics 2011). In order to serve a greater biological community, we have implemented this method in a stand-alone, efficient, and user-friendly software package, BM-Map. BM-Map takes SAM (Sequence Alignment/Map), the most popular read alignment format, as the standard input; then based on the Bayesian model, it calculates mapping probabilities of multireads for competing genomic loci; and BM-Map generates the output by adding mapping probabilities to the original SAM file so that users can easily perform downstream analyses. The program is available in three common operating systems, Linux, Mac and PC. Moreover, we have built a dedicated website, http://bioinformatics.mdanderson.org/main/BM-Map, which includes free downloads, detailed tutorials and illustration examples. We have developed a stand-alone, efficient, and user-friendly software package for accurately allocating multireads, which is an important addition to our previous methodology paper. We believe that this bioinformatics tool will greatly help RNA-seq and related applications reach their full potential in life science research.
UR - http://www.scopus.com/inward/record.url?scp=84878789327&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878789327&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-13-s8-s9
DO - 10.1186/1471-2164-13-s8-s9
M3 - Article
C2 - 23281802
AN - SCOPUS:84878789327
SN - 0309-1708
VL - 13 Suppl 8
JO - Unknown Journal
JF - Unknown Journal
ER -