Biomechanical and Endplate Effects on Nutrient Transport in the Intervertebral Disc

Morgan B. Giers, Bryce T. Munter, Kyle J. Eyster, George D. Ide, Anna G.U.S. Newcomb, Jennifer N. Lehrman, Evgenii Belykh, Vadim A. Byvaltsev, Brian P. Kelly, Mark C. Preul, Nicholas Theodore

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Background Physical data are lacking on nutrient transport in human intervertebral discs (IVDs), which support regeneration. Our objective was to study nutrient transport in porcine IVDs to determine the effects of biomechanical and physiological factors. Methods In vitro testing of whole porcine IVDs was performed under different loading conditions. Fifty cervical, thoracic, and lumbar discs with attached end plates were removed from 4 Yorkshire pigs (90–150 lbs). Discs were placed in Safranin O or Fast Green FCF histological stains in diffusion or diurnal compression-tested groups. The end plate was studied by the use of polyurethane to block it. Traction was studied with a mechanical testing frame. Discs were cut transversely and photographed. Images were analyzed for depth of annulus fibrosus (AF) stained. The nucleus pulposus (NP) was assigned a staining score. Results Results showed no difference in AF staining between the 2 stains (P = 0.60). The depth of AF staining did not increase (P = 0.60) due to convection or disc height change via diurnal loading. The NP in all open end plate samples was stained completely by day 3. NP staining was decreased in blocked end plate samples (P = 0.07) and AF staining was significantly less in traction samples than in diffusion-only samples (P = 0.04). Conclusions This method showed that most small molecule nutrient transport occurs via the end plate. Compressive load was a negligible benefit or hindrance to transport. Traction hindered transport in the short term. This method can be used to study strategies for increasing nutrient transport in IVDs.

Original languageEnglish (US)
Pages (from-to)395
Number of pages1
JournalWorld neurosurgery
StatePublished - Mar 1 2017
Externally publishedYes


  • Annulus fibrosus
  • Biomechanics
  • Calcification
  • Cell function
  • Extracellular matrix
  • Intervertebral disc
  • Nucleus pulposus
  • Nutrient transport
  • Regeneration
  • Spine

ASJC Scopus subject areas

  • Surgery
  • Clinical Neurology


Dive into the research topics of 'Biomechanical and Endplate Effects on Nutrient Transport in the Intervertebral Disc'. Together they form a unique fingerprint.

Cite this