Abstract
Perceptual-motor sequences can be learned quickly under distraction, often demonstrated by the mean reaction time (RT) change in a serial reaction time (SRT) task. However, any arbitrary mean RT can arise from one of many distinct trial-by-trial RT patterns. It is surprising that previous sequence learning studies have hinged only on the mean RT metrics while little is known about the distraction effect on its trial-by-trial processes. In an SRT task with or without distraction, we found that initially learning a fixed repeating sequence without distraction was expressed by a micro-online learning process where reaction time (RT) progressively improved within learning blocks as adults continuously performed the SRT task. Such online RT improvements, however, vanished when the SRT task was performed under distraction. Despite the detrimental effect of distraction on micro-online RT improvements, we observed offline enhancements in RT following rest intervals of 3 min that emerged to secure sequence learning under distraction. We reasoned that distraction may exert influence on the micro-online and offline learning by mediating the engagement of explicit and implicit memory. Given the offline RT change under distraction, a short rest between learning blocks may be a key player in early perceptual-motor sequence learning under distraction. We thus suggest that future studies investigating the distraction effect on sequence learning need to control the length of rest between learning blocks, while previous research with equivocal interpretations of the distraction effect failed to do so.
Original language | English (US) |
---|---|
Article number | 104287 |
Journal | Cognition |
Volume | 202 |
DOIs | |
State | Published - Sep 2020 |
Keywords
- Distraction
- Explicit learning
- Implicit learning
- Offline learning
- Online learning
- The serial reaction time task
ASJC Scopus subject areas
- Experimental and Cognitive Psychology
- Language and Linguistics
- Developmental and Educational Psychology
- Linguistics and Language
- Cognitive Neuroscience