Abstract
We present a Bayesian approach to modeling dynamic smoking addiction behavior processes when cure is not directly observed due to censoring. Subject-specific probabilities model the stochastic transitions among three behavioral states: smoking, transient quitting, and permanent quitting (absorbent state). A multivariate normal distribution for random effects is used to account for the potential correlation among the subject-specific transition probabilities. Inference is conducted using a Bayesian framework via Markov chain Monte Carlo simulation. This framework provides various measures of subject-specific predictions, which are useful for policy-making, intervention development, and evaluation. Simulations are used to validate our Bayesian methodology and assess its frequentist properties. Our methods are motivated by, and applied to, the Alpha-Tocopherol, Beta-Carotene Lung Cancer Prevention study, a large (29,133 individuals) longitudinal cohort study of smokers from Finland.
Original language | English (US) |
---|---|
Pages (from-to) | 970-978 |
Number of pages | 9 |
Journal | Biometrics |
Volume | 65 |
Issue number | 3 |
DOIs | |
State | Published - Sep 2009 |
Keywords
- Cure model
- MCMC
- Mixed-effects model
- Prediction
- Recurrent events
- Smoking cessation
ASJC Scopus subject areas
- Statistics and Probability
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)
- Agricultural and Biological Sciences(all)
- Applied Mathematics