TY - JOUR
T1 - Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD
T2 - Results from ADNI
AU - Misra, Chandan
AU - Fan, Yong
AU - Davatzikos, Christos
N1 - Funding Information:
Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI; Principal Investigator: Michael Weiner; NIH grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering (NIBIB), and through generous contributions from the following: Pfizer Inc., Wyeth Research, Bristol-Myers Squibb, Eli Lilly and Company, GlaxoSmithKline, Merck and Co. Inc., AstraZeneca AB, Novartis Pharmaceuticals Corporation, Alzheimer's Association, Eisai Global Clinical Development, Elan Corporation plc, Forest Laboratories, and the Institute for the Study of Aging, with participation from the U.S. Food and Drug Administration. Industry partnerships are coordinated through the Foundation for the National Institutes of Health. The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory of NeuroImaging at the University of California, Los Angeles.
Funding Information:
This study was financially supported by a grant by the Institute for the Study of Aging. Additional support was provided by the NIH grant R01AG14971. The authors would like to thank Evi Parmpi for help with data processing.
PY - 2009/2/15
Y1 - 2009/2/15
N2 - High-dimensional pattern classification was applied to baseline and multiple follow-up MRI scans of the Alzheimer's Disease Neuroimaging Initiative (ADNI) participants with mild cognitive impairment (MCI), in order to investigate the potential of predicting short-term conversion to Alzheimer's Disease (AD) on an individual basis. MCI participants that converted to AD (average follow-up 15 months) displayed significantly lower volumes in a number of grey matter (GM) regions, as well as in the white matter (WM). They also displayed more pronounced periventricular small-vessel pathology, as well as an increased rate of increase of such pathology. Individual person analysis was performed using a pattern classifier previously constructed from AD patients and cognitively normal (CN) individuals to yield an abnormality score that is positive for AD-like brains and negative otherwise. The abnormality scores measured from MCI non-converters (MCI-NC) followed a bimodal distribution, reflecting the heterogeneity of this group, whereas they were positive in almost all MCI converters (MCI-C), indicating extensive patterns of AD-like brain atrophy in almost all MCI-C. Both MCI subgroups had similar MMSE scores at baseline. A more specialized classifier constructed to differentiate converters from non-converters based on their baseline scans provided good classification accuracy reaching 81.5%, evaluated via cross-validation. These pattern classification schemes, which distill spatial patterns of atrophy to a single abnormality score, offer promise as biomarkers of AD and as predictors of subsequent clinical progression, on an individual patient basis.
AB - High-dimensional pattern classification was applied to baseline and multiple follow-up MRI scans of the Alzheimer's Disease Neuroimaging Initiative (ADNI) participants with mild cognitive impairment (MCI), in order to investigate the potential of predicting short-term conversion to Alzheimer's Disease (AD) on an individual basis. MCI participants that converted to AD (average follow-up 15 months) displayed significantly lower volumes in a number of grey matter (GM) regions, as well as in the white matter (WM). They also displayed more pronounced periventricular small-vessel pathology, as well as an increased rate of increase of such pathology. Individual person analysis was performed using a pattern classifier previously constructed from AD patients and cognitively normal (CN) individuals to yield an abnormality score that is positive for AD-like brains and negative otherwise. The abnormality scores measured from MCI non-converters (MCI-NC) followed a bimodal distribution, reflecting the heterogeneity of this group, whereas they were positive in almost all MCI converters (MCI-C), indicating extensive patterns of AD-like brain atrophy in almost all MCI-C. Both MCI subgroups had similar MMSE scores at baseline. A more specialized classifier constructed to differentiate converters from non-converters based on their baseline scans provided good classification accuracy reaching 81.5%, evaluated via cross-validation. These pattern classification schemes, which distill spatial patterns of atrophy to a single abnormality score, offer promise as biomarkers of AD and as predictors of subsequent clinical progression, on an individual patient basis.
KW - AD
KW - Alzheimer's disease
KW - Early detection
KW - Imaging biomarker
KW - MCI
KW - Mild cognitive impairment
KW - Pattern classification
KW - Structural MRI
UR - http://www.scopus.com/inward/record.url?scp=58149386194&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58149386194&partnerID=8YFLogxK
U2 - 10.1016/j.neuroimage.2008.10.031
DO - 10.1016/j.neuroimage.2008.10.031
M3 - Article
C2 - 19027862
AN - SCOPUS:58149386194
SN - 1053-8119
VL - 44
SP - 1415
EP - 1422
JO - NeuroImage
JF - NeuroImage
IS - 4
ER -