TY - JOUR
T1 - Barrier-to-autointegration factor influences specific histone modifications
AU - de Oca, Rocío Montes
AU - Andreassen, Paul R.
AU - Wilson, Katherine L.
N1 - Funding Information:
We are grateful to P. Traktman (Medical College of Wisconsin) for the 293:BAF and 293:CAT cell lines; R. Stolle for purified BAF; M. J. Eddins and K. Fahie (Johns Hopkins School of Medicine) for chromatography help and M. J. Eddins for Figure 1E. We thank C. Lerin and P. Puigserver (Dana Farber Cancer Institute), I. Celic and J. Boeke (Johns Hopkins School ofMedicine), W. L. Kraus (Cornell), J. Th’ng (Northwestern Ontario Regional Cancer Centre) and C. Slawson and L. Blosser (Johns Hopkins Flow Cytometry Facility) for reagents and advice. We thank W. Gu (Columbia), R. Roeder (Rockefeller), M. R. Stallcup (Univ. Southern California), T. Papamarcaki (Univ. Ioannina) and H. Wang (Univ. Alabama) for constructs and S. Taverna and the Wilson lab for insightful discussions. This work was funded by American Heart Association Predoctoral fellowship 0615601U (R.M.) and National Institutes of Health RO1 GM48646 (K.L.W.).
PY - 2011
Y1 - 2011
N2 - Defects in the nuclear envelope or nuclear 'lamina' networks cause disease and can perturb histone posttranslational (epigenetic) regulation. Barrier-to-Autointegration Factor (BAF) is an essential but enigmatic lamina component that binds lamins, LEM-domain proteins, DNA and histone H3 directly. We report that BAF copurified with nuclease-digested mononucleosomes and associated with modified histones in vivo. BAF overexpression significantly reduced global histone H3 acetylation by 18%. In cells that stably overexpressed BAF 3-fold, silencing mark H3-K27-Me1/3 and active marks H4-K16-Ac and H4-Ac5 decreased significantly. Significant increases were also seen for silencing mark H3-K9-Me3, active marks H3-K4-Me2, H3-K9/K14-Ac and H4-K5-Ac and a mark (H3-K79-Me2) associated with both active and silent chromatin. Other increases (H3-S10-P, H3-S28-P and silencing mark H3-K9-Me2) did not reach statistical significance. BAF overexpression also significantly influenced cell cycle distribution. Moreover, BAF associated in vivo with SET/I2PP2A (protein phosphatase 2A inhibitor; blocks H3 dephosphorylation) and G9a (H3-K9 methyltransferase), but showed no detectable association with HDAC1 or HATs. These findings reveal BAF as a novel epigenetic regulator and are discussed in relation to BAF deficiency phenotypes, which include a hereditary progeria syndrome and loss of pluripotency in embryonic stem cells.
AB - Defects in the nuclear envelope or nuclear 'lamina' networks cause disease and can perturb histone posttranslational (epigenetic) regulation. Barrier-to-Autointegration Factor (BAF) is an essential but enigmatic lamina component that binds lamins, LEM-domain proteins, DNA and histone H3 directly. We report that BAF copurified with nuclease-digested mononucleosomes and associated with modified histones in vivo. BAF overexpression significantly reduced global histone H3 acetylation by 18%. In cells that stably overexpressed BAF 3-fold, silencing mark H3-K27-Me1/3 and active marks H4-K16-Ac and H4-Ac5 decreased significantly. Significant increases were also seen for silencing mark H3-K9-Me3, active marks H3-K4-Me2, H3-K9/K14-Ac and H4-K5-Ac and a mark (H3-K79-Me2) associated with both active and silent chromatin. Other increases (H3-S10-P, H3-S28-P and silencing mark H3-K9-Me2) did not reach statistical significance. BAF overexpression also significantly influenced cell cycle distribution. Moreover, BAF associated in vivo with SET/I2PP2A (protein phosphatase 2A inhibitor; blocks H3 dephosphorylation) and G9a (H3-K9 methyltransferase), but showed no detectable association with HDAC1 or HATs. These findings reveal BAF as a novel epigenetic regulator and are discussed in relation to BAF deficiency phenotypes, which include a hereditary progeria syndrome and loss of pluripotency in embryonic stem cells.
KW - Barrier-to-autointegration factor
KW - Cell cycle
KW - DNA replication
KW - G9a
KW - H3-K9 dimethylation
KW - H3-S10 phosphorylation
KW - Hutchinson-gilford progeria syndrome
KW - Lamina-associated domain
KW - Nuclear envelope
KW - Nucleoskeleton
KW - Nucleosome
KW - SET/I2PP2A
UR - http://www.scopus.com/inward/record.url?scp=84856922144&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84856922144&partnerID=8YFLogxK
U2 - 10.4161/nucl.2.6.17960
DO - 10.4161/nucl.2.6.17960
M3 - Article
C2 - 22127260
AN - SCOPUS:84856922144
SN - 1949-1034
VL - 2
SP - 580
EP - 590
JO - Nucleus
JF - Nucleus
IS - 6
ER -