Bacterial cell wall-induced arthritis: Chemical composition and tissue distribution of four Lactobacillus strains

Egle Šimelyte, Marja Rimpiläinen, Leena Lehtonen, Xiang Zhang, Paavo Toivanen

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls were resistant to lysozyme degradation, whereas the L. fermentum cell wall was lysozyme sensitive. Muramic acid was observed in the liver, spleen, and lymph nodes in considerably larger amounts after injection of an arthritogenic L. casei cell wall than following injection of a nonarthritogenic L. fermentum cell wall. The L. casei cell wall also persisted in the tissues longer than the L. fermentum cell wall. The present results, taken together with those published previously, underline the possibility that the chemical structure of peptidoglycan is important in determining the arthritogenicity of the bacterial cell wall.

Original languageEnglish (US)
Pages (from-to)3535-3540
Number of pages6
JournalInfection and immunity
Volume68
Issue number6
DOIs
StatePublished - Jun 2000
Externally publishedYes

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Bacterial cell wall-induced arthritis: Chemical composition and tissue distribution of four Lactobacillus strains'. Together they form a unique fingerprint.

Cite this