TY - JOUR
T1 - Automatic Rejection based on Tissue Signal (ARTS) for motion-corrected quantification of cerebral venous oxygenation in neonates and older adults
AU - Gou, Yifan
AU - Golden, W. Christopher
AU - Lin, Zixuan
AU - Shepard, Jennifer
AU - Tekes, Aylin
AU - Hu, Zhiyi
AU - Li, Xin
AU - Oishi, Kumiko
AU - Albert, Marilyn
AU - Lu, Hanzhang
AU - Liu, Peiying
AU - Jiang, Dengrong
N1 - Publisher Copyright:
© 2023 Elsevier Inc.
PY - 2024/1
Y1 - 2024/1
N2 - Objective: Cerebral venous oxygenation (Yv) is a key parameter for the brain's oxygen utilization and has been suggested to be a valuable biomarker in various brain diseases including hypoxic ischemic encephalopathy in neonates and Alzheimer's disease in older adults. T2-Relaxation-Under-Spin-Tagging (TRUST) MRI is a widely used technique to measure global Yv level and has been validated against gold-standard PET. However, subject motion during TRUST MRI scan can introduce considerable errors in Yv quantification, especially for noncompliant subjects. The aim of this study was to develop an Automatic Rejection based on Tissue Signal (ARTS) algorithm for automatic detection and exclusion of motion-contaminated images to improve the precision of Yv quantification. Methods: TRUST MRI data were collected from a neonatal cohort (N = 37, 16 females, gestational age = 39.12 ± 1.11 weeks, postnatal age = 1.89 ± 0.74 days) and an older adult cohort (N = 223, 134 females, age = 68.02 ± 9.01 years). Manual identification of motion-corrupted images was conducted for both cohorts to serve as a gold-standard. 9.3% of the images in the neonatal datasets and 0.4% of the images in the older adult datasets were manually identified as motion-contaminated. The ARTS algorithm was trained using the neonatal datasets. TRUST Yv values, as well as the estimation uncertainty (ΔR2) and test-retest coefficient-of-variation (CoV) of Yv, were calculated with and without ARTS motion exclusion. The ARTS algorithm was tested on datasets of older adults: first on the original adult datasets with little motion, and then on simulated adult datasets where the percentage of motion-corrupted images matched that of the neonatal datasets. Results: In the neonatal datasets, the ARTS algorithm exhibited a sensitivity of 0.95 and a specificity of 0.97 in detecting motion-contaminated images. Compared to no motion exclusion, ARTS significantly reduced the ΔR2 (median = 3.68 Hz vs. 4.89 Hz, P = 0.0002) and CoV (median = 2.57% vs. 6.87%, P = 0.0005) of Yv measurements. In the original older adult datasets, the sensitivity and specificity of ARTS were 0.70 and 1.00, respectively. In the simulated adult datasets, ARTS demonstrated a sensitivity of 0.91 and a specificity of 1.00. Additionally, ARTS significantly reduced the ΔR2 compared to no motion exclusion (median = 2.15 Hz vs. 3.54 Hz, P < 0.0001). Conclusion: ARTS can improve the reliability of Yv estimation in noncompliant subjects, which may enhance the utility of Yv as a biomarker for brain diseases.
AB - Objective: Cerebral venous oxygenation (Yv) is a key parameter for the brain's oxygen utilization and has been suggested to be a valuable biomarker in various brain diseases including hypoxic ischemic encephalopathy in neonates and Alzheimer's disease in older adults. T2-Relaxation-Under-Spin-Tagging (TRUST) MRI is a widely used technique to measure global Yv level and has been validated against gold-standard PET. However, subject motion during TRUST MRI scan can introduce considerable errors in Yv quantification, especially for noncompliant subjects. The aim of this study was to develop an Automatic Rejection based on Tissue Signal (ARTS) algorithm for automatic detection and exclusion of motion-contaminated images to improve the precision of Yv quantification. Methods: TRUST MRI data were collected from a neonatal cohort (N = 37, 16 females, gestational age = 39.12 ± 1.11 weeks, postnatal age = 1.89 ± 0.74 days) and an older adult cohort (N = 223, 134 females, age = 68.02 ± 9.01 years). Manual identification of motion-corrupted images was conducted for both cohorts to serve as a gold-standard. 9.3% of the images in the neonatal datasets and 0.4% of the images in the older adult datasets were manually identified as motion-contaminated. The ARTS algorithm was trained using the neonatal datasets. TRUST Yv values, as well as the estimation uncertainty (ΔR2) and test-retest coefficient-of-variation (CoV) of Yv, were calculated with and without ARTS motion exclusion. The ARTS algorithm was tested on datasets of older adults: first on the original adult datasets with little motion, and then on simulated adult datasets where the percentage of motion-corrupted images matched that of the neonatal datasets. Results: In the neonatal datasets, the ARTS algorithm exhibited a sensitivity of 0.95 and a specificity of 0.97 in detecting motion-contaminated images. Compared to no motion exclusion, ARTS significantly reduced the ΔR2 (median = 3.68 Hz vs. 4.89 Hz, P = 0.0002) and CoV (median = 2.57% vs. 6.87%, P = 0.0005) of Yv measurements. In the original older adult datasets, the sensitivity and specificity of ARTS were 0.70 and 1.00, respectively. In the simulated adult datasets, ARTS demonstrated a sensitivity of 0.91 and a specificity of 1.00. Additionally, ARTS significantly reduced the ΔR2 compared to no motion exclusion (median = 2.15 Hz vs. 3.54 Hz, P < 0.0001). Conclusion: ARTS can improve the reliability of Yv estimation in noncompliant subjects, which may enhance the utility of Yv as a biomarker for brain diseases.
KW - Motion correction
KW - Neonate
KW - Older adult
KW - Oxygen extraction
KW - TRUST MRI
KW - Venous oxygenation
UR - http://www.scopus.com/inward/record.url?scp=85176219689&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85176219689&partnerID=8YFLogxK
U2 - 10.1016/j.mri.2023.11.008
DO - 10.1016/j.mri.2023.11.008
M3 - Article
C2 - 37939974
AN - SCOPUS:85176219689
SN - 0730-725X
VL - 105
SP - 92
EP - 99
JO - Magnetic Resonance Imaging
JF - Magnetic Resonance Imaging
ER -