Automatic Plane Pose Estimation for Cardiac Left Ventricle Coverage Estimation via Deep Adversarial Regression Network

Le Zhang, Kevin Bronik, Stefan K. Piechnik, Joao A.C. Lima, Stefan Neubauer, Steffen E. Petersen, Alejandro F. Frangi

Research output: Contribution to journalArticlepeer-review

Abstract

Accurate segmentation of the ventricles plays a crucial role in determining cardiac functional parameters such as ventricular volume, ventricular mass, and ejection fraction. However, poor image quality, such as inadequate coverage of the left ventricle (LV) and right ventricle (RV) in cardiac magnetic resonance (CMR) image sequences, can significantly affect the assessment of cardiac function. This study investigates issues related to missing or corrupted imaging planes, which often lead to incomplete ventricle coverage. To address the challenge of estimating ventricle coverage in CMR images regardless of variations in imaging parameters such as device type, magnetic field strength, and protocol execution, we introduce a novel convolutional neural network (CNN) based on adversarial learning. Additionally, we integrate supplementary information (e.g., cross-view image data) as privileged information to enhance the interpretability of our model's predictions and identify potential biases or inaccuracies. This research represents the first attempt to automatically estimate ventricular coverage by identifying missing slices and plane orientations in CMR images using a dataset-agnostic approach. The effectiveness of the proposed model is demonstrated through the evaluation of datasets from three diverse and sizable image acquisition cohorts, demonstrating superior performance compared to existing methods.

Original languageEnglish (US)
Pages (from-to)4738-4752
Number of pages15
JournalIEEE Transactions on Artificial Intelligence
Volume5
Issue number9
DOIs
StatePublished - 2024

Keywords

  • Adversarial learning (AL)
  • deep learning (DL)
  • privileged information (PI)
  • regression network
  • ventricle pose estimation

ASJC Scopus subject areas

  • Computer Science Applications
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Automatic Plane Pose Estimation for Cardiac Left Ventricle Coverage Estimation via Deep Adversarial Regression Network'. Together they form a unique fingerprint.

Cite this