TY - JOUR
T1 - Associations of Environmental Conditions and Vibrio parahaemolyticus Genetic Markers in Washington State Pacific Oysters
AU - Flynn, Aspen
AU - Davis, Benjamin J.K.
AU - Atherly, Erika
AU - Olson, Gina
AU - Bowers, John C.
AU - DePaola, Angelo
AU - Curriero, Frank C.
N1 - Funding Information:
The authors would like to thank Lawrence Sullivan, Laura Johnson, and Clara Hard from the Washington State Department of Health for their collaboration and assistance in coordinating and cleaning the Vibrio oyster monitoring data. Additional thanks are given to the many summer interns who conducted the oyster sampling over the years. The authors are indebted to all the staff and students at the Washington State Public Health Laboratory, particularly William Glover for designing the shellfish microbial methodology. The authors would also like to thank Rohinee Paranjpye and Linda Rhodes at the Northwest Fisheries Science Center for their guidance and support. Finally, the authors would like to thank Anne Corrigan from the Spatial Science for Public Health Center for helping to design the map displayed in this paper.
Funding Information:
This work was supported by the National Institute of Allergy and Infectious Diseases through the grant “Characterizing the Spatial Temporal Dynamics and Human Health Risks of Vibrio parahaemolyticus Bacteria in Estuarine Environments” (PI: Curriero, 1R01AI123931–01A1). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Publisher Copyright:
© Copyright © 2019 Flynn, Davis, Atherly, Olson, Bowers, DePaola and Curriero.
PY - 2019/12/4
Y1 - 2019/12/4
N2 - Vibrio parahaemolyticus is a naturally occurring bacterium in estuarine waters and is a major cause of seafood-borne illness. The bacterium has been consistently identified in Pacific Northwest waters and elevated illness rates of vibriosis in Washington State have raised concerns among growers, risk managers, and consumers of Pacific oysters (Crassostrea gigas). In order to better understand pre-harvest variation of V. parahaemolyticus in the region, abundance of total and potentially pathogenic strains of the bacterium in a large number of Washington State Pacific oyster samples were compared with environmental conditions at the time of sampling. The Washington Department of Health regularly sampled oysters between June and September at over 21 locations from 2014 to 2018, resulting in over 946 samples. V. parahaemolyticus strains carrying three genetic markers, tlh, trh, and tdh, were enumerated in oyster tissue using a most probable number-PCR analysis. Tobit regressions and seemingly unrelated estimations were used to formally assess relationships between environmental measures and genetic markers. All genetic markers were found to be positively associated with temperature, independent of the abundance of other genetic markers. Surface water temperature displayed a non-linear relationship, with no association observed between any genetic marker in the warmest waters. There were also stark differences between surface and shore water temperature models. Salinity was not found to be substantially associated with any of the genetic variables. The relative abundance of tdh+ strains given total V. parahaemolyticus abundance (pathogenic ratio tdh:tlh) was negatively associated with water temperature in colder waters and decreased exponentially as total V. parahaemolyticus abundance increased. Strains carrying the trh gene had a pronounced positive association with strains carrying the tdh gene but was also negatively associated with the tdh:tlh pathogenic ratio. These results suggest that there are ecological relationships of competition, growth, and survival for V. parahaemolyticus strains in the oyster tissue matrix. This work also improves the overall understanding of environmental associations with V. parahaemolyticus in Washington State Pacific oysters, laying the groundwork for future risk mitigation efforts in the region.
AB - Vibrio parahaemolyticus is a naturally occurring bacterium in estuarine waters and is a major cause of seafood-borne illness. The bacterium has been consistently identified in Pacific Northwest waters and elevated illness rates of vibriosis in Washington State have raised concerns among growers, risk managers, and consumers of Pacific oysters (Crassostrea gigas). In order to better understand pre-harvest variation of V. parahaemolyticus in the region, abundance of total and potentially pathogenic strains of the bacterium in a large number of Washington State Pacific oyster samples were compared with environmental conditions at the time of sampling. The Washington Department of Health regularly sampled oysters between June and September at over 21 locations from 2014 to 2018, resulting in over 946 samples. V. parahaemolyticus strains carrying three genetic markers, tlh, trh, and tdh, were enumerated in oyster tissue using a most probable number-PCR analysis. Tobit regressions and seemingly unrelated estimations were used to formally assess relationships between environmental measures and genetic markers. All genetic markers were found to be positively associated with temperature, independent of the abundance of other genetic markers. Surface water temperature displayed a non-linear relationship, with no association observed between any genetic marker in the warmest waters. There were also stark differences between surface and shore water temperature models. Salinity was not found to be substantially associated with any of the genetic variables. The relative abundance of tdh+ strains given total V. parahaemolyticus abundance (pathogenic ratio tdh:tlh) was negatively associated with water temperature in colder waters and decreased exponentially as total V. parahaemolyticus abundance increased. Strains carrying the trh gene had a pronounced positive association with strains carrying the tdh gene but was also negatively associated with the tdh:tlh pathogenic ratio. These results suggest that there are ecological relationships of competition, growth, and survival for V. parahaemolyticus strains in the oyster tissue matrix. This work also improves the overall understanding of environmental associations with V. parahaemolyticus in Washington State Pacific oysters, laying the groundwork for future risk mitigation efforts in the region.
KW - Crassostrea gigas
KW - Pacific oysters
KW - Vibrio parahaemolyticus
KW - Washington
KW - genetic markers
KW - seafood-borne illness
KW - temperature
UR - http://www.scopus.com/inward/record.url?scp=85076951889&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076951889&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2019.02797
DO - 10.3389/fmicb.2019.02797
M3 - Article
C2 - 31866972
AN - SCOPUS:85076951889
SN - 1664-302X
VL - 10
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
M1 - 2797
ER -