Assessing the health estimation capacity of air pollution exposure prediction models

Jenna R. Krall, Joshua P. Keller, Roger D. Peng

Research output: Contribution to journalArticlepeer-review

Abstract

Background: The era of big data has enabled sophisticated models to predict air pollution concentrations over space and time. Historically these models have been evaluated using overall metrics that measure how close predictions are to monitoring data. However, overall methods are not designed to distinguish error at timescales most relevant for epidemiologic studies, such as day-to-day errors that impact studies of short-term health associations. Methods: We introduce frequency band model performance, which quantifies health estimation capacity of air quality prediction models for time series studies of air pollution and health. Frequency band model performance uses a discrete Fourier transform to evaluate prediction models at timescales of interest. We simulated fine particulate matter (PM2.5), with errors at timescales varying from acute to seasonal, and health time series data. To compare evaluation approaches, we use correlations and root mean squared error (RMSE). Additionally, we assess health estimation capacity through bias and RMSE in estimated health associations. We apply frequency band model performance to PM2.5 predictions at 17 monitors in 8 US cities. Results: In simulations, frequency band model performance rates predictions better (lower RMSE, higher correlation) when there is no error at a particular timescale (e.g., acute) and worse when error is added to that timescale, compared to overall approaches. Further, frequency band model performance is more strongly associated (R2 = 0.95) with health association bias compared to overall approaches (R2 = 0.57). For PM2.5 predictions in Salt Lake City, UT, frequency band model performance better identifies acute error that may impact estimated short-term health associations. Conclusions: For epidemiologic studies, frequency band model performance provides an improvement over existing approaches because it evaluates models at the timescale of interest and is more strongly associated with bias in estimated health associations. Evaluating prediction models at timescales relevant for health studies is critical to determining whether model error will impact estimated health associations.

Original languageEnglish (US)
Article number35
JournalEnvironmental Health: A Global Access Science Source
Volume21
Issue number1
DOIs
StatePublished - Dec 2022

Keywords

  • Ambient air pollution
  • Chemical transport model
  • Epidemiology
  • Exposure assessment
  • Fourier transform
  • Health assessment
  • Particulate matter

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Assessing the health estimation capacity of air pollution exposure prediction models'. Together they form a unique fingerprint.

Cite this