Aqueous proteins help predict the response of patients with neovascular age-related macular degeneration to anti-VEGF therapy

Xuan Cao, Jaron Castillo Sanchez, Aumreetam Dinabandhu, Chuanyu Guo, Tapan P. Patel, Zhiyong Yang, Ming Wen Hu, Lijun Chen, Yuefan Wang, Danyal Malik, Kathleen Jee, Yassine J. Daoud, James T. Handa, Hui Zhang, Jiang Qian, Silvia Montaner, Akrit Sodhi

Research output: Contribution to journalArticlepeer-review

Abstract

BACKGROUND. To reduce the treatment burden for patients with neovascular age-related macular degeneration (nvAMD), emerging therapies targeting vascular endothelial growth factor (VEGF) are being designed to extend the interval between treatments, thereby minimizing the number of intraocular injections. However, which patients will benefit from longer-acting agents is not clear. METHODS. Eyes with nvAMD (n = 122) underwent 3 consecutive monthly injections with currently available anti-VEGF therapies, followed by a treat-and-extend protocol. Patients who remained quiescent 12 weeks from their prior treatment entered a treatment pause and were switched to pro re nata (PRN) treatment (based on vision, clinical exam, and/or imaging studies). Proteomic analysis was performed on aqueous fluid to identify proteins that correlate with patients’ response to treatment. RESULTS. At the end of 1 year, 38 of 122 eyes (31%) entered a treatment pause (≥30 weeks). Conversely, 21 of 122 eyes (17%) failed extension and required monthly treatment at the end of year 1. Proteomic analysis of aqueous fluid identified proteins that correlated with patients’ response to treatment, including proteins previously implicated in AMD pathogenesis. Interestingly, apolipoprotein-B100 (ApoB100), a principal component of drusen implicated in the progression of nonneovascular AMD, was increased in treated patients who required less frequent injections. ApoB100 expression was higher in AMD eyes compared with controls but was lower in eyes that develop choroidal neovascularization (CNV), consistent with a protective role. Accordingly, mice overexpressing ApoB100 were partially protected from laser-induced CNV. CONCLUSION. Aqueous biomarkers could help identify patients with nvAMD who may not require or benefit from long-term treatment with anti-VEGF therapy.

Original languageEnglish (US)
Article number144469
JournalJournal of Clinical Investigation
Volume132
Issue number2
DOIs
StatePublished - Jan 18 2022

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Aqueous proteins help predict the response of patients with neovascular age-related macular degeneration to anti-VEGF therapy'. Together they form a unique fingerprint.

Cite this