TY - JOUR
T1 - Applying diagnosis and pharmacy-based risk models to predict pharmacy use in Aragon, Spain
T2 - The impact of a local calibration
AU - Calderán-Larrãaga, Amaia
AU - Abrams, Chad
AU - Poblador-Plou, Beatriz
AU - Weiner, Jonathan P.
AU - Prados-Torres, Alexandra
N1 - Funding Information:
Data were obtained from the Electronic Medical Records of patients from six primary care health centres belonging to Aragon’s Public Health Care System for the years 2006 (Year-1) and 2007 (Year-2). In order to increase the reliability of the data, health centres were selected according to their experience with the use of Electronic Medical Records, which, in all cases, was longer than three years. The sample was restricted to enrolees seen at least once by a public general practitioner (family doctor or paediatrician) during both Year 1 and Year 2, which resulted in a final sample of 84,152. Among the 84,152 patients 9.4% had no pharmacy expenditure in 2006 and 9.3% had no pharmacy expenditure in 2007. Data were obtained from administrative registries of the Aragon Health Care System after official request and authorization. Personal information was anonymised according to the Spanish Organic Law of Personal data Protection 15/1999. This work is part of a project funded by the Carlos III Health Institute which has been approved by the Ethics Committee of Aragon (CEICA).
Funding Information:
This study was funded by a grant from the Instituto Aragonés de Ciencias de la Salud, Regional Government of Aragon (Beca de Estancia en Centros Nacionales y Extranjeros de reconocido prestigio en Uso Racional del Medicamento. No. 70, 30th May 2008, Aragon Official Bulletin) and the Program for the Incorporation of Research Groups into the Spanish Health System (EMER 07/020). The authors thank Antonio Poncel and Klaus Lemke for their help with data extraction and Patricio Muñiz, Karen Kinder Siemens and Miguel Siles for their methodological support. Thanks also to the different professionals of the health centres for their constant input of data on a daily basis. Without their contribution, this study could not have been conducted.
PY - 2010
Y1 - 2010
N2 - Background. In the financing of a national health system, where pharmaceutical spending is one of the main cost containment targets, predicting pharmacy costs for individuals and populations is essential for budget planning and care management. Although most efforts have focused on risk adjustment applying diagnostic data, the reliability of this information source has been questioned in the primary care setting. We sought to assess the usefulness of incorporating pharmacy data into claims-based predictive models (PMs). Developed primarily for the U.S. health care setting, a secondary objective was to evaluate the benefit of a local calibration in order to adapt the PMs to the Spanish health care system. Methods. The population was drawn from patients within the primary care setting of Aragon, Spain (n = 84,152). Diagnostic, medication and prior cost data were used to develop PMs based on the Johns Hopkins ACG methodology. Model performance was assessed through r-squared statistics and predictive ratios. The capacity to identify future high-cost patients was examined through c-statistic, sensitivity and specificity parameters. Results. The PMs based on pharmacy data had a higher capacity to predict future pharmacy expenses and to identify potential high-cost patients than the models based on diagnostic data alone and a capacity almost as high as that of the combined diagnosis-pharmacy-based PM. PMs provided considerably better predictions when calibrated to Spanish data. Conclusion. Understandably, pharmacy spending is more predictable using pharmacy-based risk markers compared with diagnosis-based risk markers. Pharmacy-based PMs can assist plan administrators and medical directors in planning the health budget and identifying high-cost-risk patients amenable to care management programs.
AB - Background. In the financing of a national health system, where pharmaceutical spending is one of the main cost containment targets, predicting pharmacy costs for individuals and populations is essential for budget planning and care management. Although most efforts have focused on risk adjustment applying diagnostic data, the reliability of this information source has been questioned in the primary care setting. We sought to assess the usefulness of incorporating pharmacy data into claims-based predictive models (PMs). Developed primarily for the U.S. health care setting, a secondary objective was to evaluate the benefit of a local calibration in order to adapt the PMs to the Spanish health care system. Methods. The population was drawn from patients within the primary care setting of Aragon, Spain (n = 84,152). Diagnostic, medication and prior cost data were used to develop PMs based on the Johns Hopkins ACG methodology. Model performance was assessed through r-squared statistics and predictive ratios. The capacity to identify future high-cost patients was examined through c-statistic, sensitivity and specificity parameters. Results. The PMs based on pharmacy data had a higher capacity to predict future pharmacy expenses and to identify potential high-cost patients than the models based on diagnostic data alone and a capacity almost as high as that of the combined diagnosis-pharmacy-based PM. PMs provided considerably better predictions when calibrated to Spanish data. Conclusion. Understandably, pharmacy spending is more predictable using pharmacy-based risk markers compared with diagnosis-based risk markers. Pharmacy-based PMs can assist plan administrators and medical directors in planning the health budget and identifying high-cost-risk patients amenable to care management programs.
UR - http://www.scopus.com/inward/record.url?scp=77649176451&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77649176451&partnerID=8YFLogxK
U2 - 10.1186/1472-6963-10-22
DO - 10.1186/1472-6963-10-22
M3 - Article
C2 - 20092654
AN - SCOPUS:77649176451
SN - 1472-6963
VL - 10
JO - BMC health services research
JF - BMC health services research
M1 - 22
ER -