TY - JOUR
T1 - Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer
AU - Song, Dongweon
AU - Chaerkady, Raghothama
AU - Tan, Aik Choon
AU - García-García, Elena
AU - Nalli, Anuradha
AU - Suárez-Gauthier, Ana
AU - López-Ríos, Fernando
AU - Xian, Feng Zhang
AU - Solomon, Anna
AU - Tong, Jeffrey
AU - Read, Margaret
AU - Fritz, Christian
AU - Jimeno, Antonio
AU - Pandey, Akhilesh
AU - Hidalgo, Manuel
PY - 2008/10/1
Y1 - 2008/10/1
N2 - Targeting Hsp90 is an attractive strategy for anticancer therapy because the diversity and relevance of biological processes are regulated by these proteins in most cancers. However, the role and mode of action of Hsp90 inhibitors in pancreatic cancer has not been studied. This study aimed to assess the antitumor activity of the Hsp90 inhibitor, IPI-504, in pancreatic cancer and to determine the biological effects of the agent. In vitro, we show that pharmacologic inhibition of Hsp90 by IPI-504 exerts antiproliferative effects in a panel of pancreatic cancer cells in a dose- and time-dependent manner. In pancreatic cancer xenografts obtained directly from patients with pancreas cancer, the agent resulted in a marked suppression of tumor growth. Although known Hsp90 client proteins were significantly modulated in IPI-504-treated cell line, no consistent alteration of these proteins was observed in vivo other than induction of Hsp70 expression in the treated xenografted tumors. Using a proteomic profiling analysis with isotope tags for relative and absolute quantitation labeling technique, we have identified 20 down-regulated proteins and 42 up-regulated proteins on IPI-504 treatment.tumor growth Identical changes were observed in the expression of the genes coding for these proteins in a subset of proteins including HSPA1B, LGALS3, CALM1, FAM84B, FDPS, GOLPH2, HBA1, HIST1H1C, HLA-B, and MARCKS. The majority of these proteins belong to the functional class of intracellular signal transduction, immune response, cell growth and maintenance, transport, and metabolism. In summary, we show that IPI-504 has potent antitumor activity in pancreatic cancer and identify potential pharmacologic targets using a proteomics and gene expression profiling.
AB - Targeting Hsp90 is an attractive strategy for anticancer therapy because the diversity and relevance of biological processes are regulated by these proteins in most cancers. However, the role and mode of action of Hsp90 inhibitors in pancreatic cancer has not been studied. This study aimed to assess the antitumor activity of the Hsp90 inhibitor, IPI-504, in pancreatic cancer and to determine the biological effects of the agent. In vitro, we show that pharmacologic inhibition of Hsp90 by IPI-504 exerts antiproliferative effects in a panel of pancreatic cancer cells in a dose- and time-dependent manner. In pancreatic cancer xenografts obtained directly from patients with pancreas cancer, the agent resulted in a marked suppression of tumor growth. Although known Hsp90 client proteins were significantly modulated in IPI-504-treated cell line, no consistent alteration of these proteins was observed in vivo other than induction of Hsp70 expression in the treated xenografted tumors. Using a proteomic profiling analysis with isotope tags for relative and absolute quantitation labeling technique, we have identified 20 down-regulated proteins and 42 up-regulated proteins on IPI-504 treatment.tumor growth Identical changes were observed in the expression of the genes coding for these proteins in a subset of proteins including HSPA1B, LGALS3, CALM1, FAM84B, FDPS, GOLPH2, HBA1, HIST1H1C, HLA-B, and MARCKS. The majority of these proteins belong to the functional class of intracellular signal transduction, immune response, cell growth and maintenance, transport, and metabolism. In summary, we show that IPI-504 has potent antitumor activity in pancreatic cancer and identify potential pharmacologic targets using a proteomics and gene expression profiling.
UR - http://www.scopus.com/inward/record.url?scp=55749110744&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=55749110744&partnerID=8YFLogxK
U2 - 10.1158/1535-7163.MCT-08-0508
DO - 10.1158/1535-7163.MCT-08-0508
M3 - Article
C2 - 18852131
AN - SCOPUS:55749110744
SN - 1535-7163
VL - 7
SP - 3275
EP - 3284
JO - Molecular Cancer Therapeutics
JF - Molecular Cancer Therapeutics
IS - 10
ER -