TY - JOUR
T1 - Antiseizure effect of 2-deoxyglucose is not dependent on the presynaptic vacuole ATP pump or the somatic ATP-sensitive K1 channel
AU - Shao, Li Rong
AU - Janicot, Remi
AU - Stafstrom, Carl E.
N1 - Funding Information:
This work was supported in part by generous gifts from the Mathias Koch Memorial Fund of the Community Foundation of Southern Wisconsin, the Sandra and Malcolm Berman Foundation, and the Paine Foundation.
Publisher Copyright:
Copyright © 2023 the American Physiological Society.
PY - 2023/6
Y1 - 2023/6
N2 - Inhibition of glycolysis with 2-deoxyglucose (2-DG) produces antiseizure effects in brain slices and animal models, yet the mechanisms remain elusive. Here, we examined two glycolysis-derived ATP-associated mechanisms: vacuole ATP pump (V-ATPase) and ATP-sensitive K+ channel (KATP). Epileptiform bursts were generated in the CA3 area of hippocampal slices by 0 Mg2+ and 4-aminopyridine. 2-DG consistently abolished epileptiform bursts in the presence of pyruvate (to sustain tricarboxylic acid cycle for oxidative ATP production) at 30-33°C but not at room temperature (22°C). Under physiological conditions, 2-DG did not reduce the amplitude of evoked excitatory postsynaptic currents (EPSCs) or the paired-pulse ratio in CA3 neurons. During repetitive high-frequency (20 Hz, 20-50 pulses) stimulation, 2-DG did not accelerate the decline of EPSCs (i.e., depletion of transmitter release), even when preincubated with 8 mM K+ to enhance activity-dependent uptake of 2-DG. In addition, in 2-DG tetanic stimulation (200 Hz, 1 s) dramatically increased rather than diminished the occurrence of spontaneous EPSCs immediately after stimulation (i.e., no transmitter depletion). Moreover, a V-ATPase blocker (concanamycin) failed to block epileptiform bursts that were subsequently abolished by 2-DG. Furthermore, 2-DG did not induce detectable KATP current in hippocampal neurons. Finally, epileptiform bursts were not affected by either a KATP opener (diazoxide) or a KATP blocker (glibenclamide) but were blocked by 2-DG in the same slices. Altogether, these data suggest that 2-DG's antiseizure action is temperature dependent and achieved exclusively by inhibition of glycolysis and is not likely to be mediated by the two membrane-bound ATP-associated machinery mechanisms, V-ATPase and KATP. NEW & NOTEWORTHY Inhibition of glycolysis with 2-deoxyglucose (2-DG) represents a novel metabolic antiseizure approach, yet the mechanisms remain elusive. Here, we show that 2-DG's antiseizure action is both glycolysis and temperature dependent but not mediated by the vacuole ATP pump (V-ATPase) or ATP-sensitive K+ channel (KATP). Our data provide new insights to understand 2-DG's cellular mechanisms of action and, more broadly, neuronal metabolism and excitability.
AB - Inhibition of glycolysis with 2-deoxyglucose (2-DG) produces antiseizure effects in brain slices and animal models, yet the mechanisms remain elusive. Here, we examined two glycolysis-derived ATP-associated mechanisms: vacuole ATP pump (V-ATPase) and ATP-sensitive K+ channel (KATP). Epileptiform bursts were generated in the CA3 area of hippocampal slices by 0 Mg2+ and 4-aminopyridine. 2-DG consistently abolished epileptiform bursts in the presence of pyruvate (to sustain tricarboxylic acid cycle for oxidative ATP production) at 30-33°C but not at room temperature (22°C). Under physiological conditions, 2-DG did not reduce the amplitude of evoked excitatory postsynaptic currents (EPSCs) or the paired-pulse ratio in CA3 neurons. During repetitive high-frequency (20 Hz, 20-50 pulses) stimulation, 2-DG did not accelerate the decline of EPSCs (i.e., depletion of transmitter release), even when preincubated with 8 mM K+ to enhance activity-dependent uptake of 2-DG. In addition, in 2-DG tetanic stimulation (200 Hz, 1 s) dramatically increased rather than diminished the occurrence of spontaneous EPSCs immediately after stimulation (i.e., no transmitter depletion). Moreover, a V-ATPase blocker (concanamycin) failed to block epileptiform bursts that were subsequently abolished by 2-DG. Furthermore, 2-DG did not induce detectable KATP current in hippocampal neurons. Finally, epileptiform bursts were not affected by either a KATP opener (diazoxide) or a KATP blocker (glibenclamide) but were blocked by 2-DG in the same slices. Altogether, these data suggest that 2-DG's antiseizure action is temperature dependent and achieved exclusively by inhibition of glycolysis and is not likely to be mediated by the two membrane-bound ATP-associated machinery mechanisms, V-ATPase and KATP. NEW & NOTEWORTHY Inhibition of glycolysis with 2-deoxyglucose (2-DG) represents a novel metabolic antiseizure approach, yet the mechanisms remain elusive. Here, we show that 2-DG's antiseizure action is both glycolysis and temperature dependent but not mediated by the vacuole ATP pump (V-ATPase) or ATP-sensitive K+ channel (KATP). Our data provide new insights to understand 2-DG's cellular mechanisms of action and, more broadly, neuronal metabolism and excitability.
KW - antiseizure medication
KW - electrophysiology
KW - excitatory postsynaptic current
KW - glycolysis
KW - neurotransmitter depletion
UR - http://www.scopus.com/inward/record.url?scp=85160965283&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85160965283&partnerID=8YFLogxK
U2 - 10.1152/jn.00124.2023
DO - 10.1152/jn.00124.2023
M3 - Article
C2 - 37222440
AN - SCOPUS:85160965283
SN - 0022-3077
VL - 129
SP - 1423
EP - 1433
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 6
ER -