An RNA-targeting CRISPR–Cas13d system alleviates disease-related phenotypes in Huntington’s disease models

Kathryn H. Morelli, Qian Wu, Maya L. Gosztyla, Hongshuai Liu, Minmin Yao, Chuangchuang Zhang, Jiaxu Chen, Ryan J. Marina, Kari Lee, Krysten L. Jones, Megan Y. Huang, Allison Li, Charlene Smith-Geater, Leslie M. Thompson, Wenzhen Duan, Gene W. Yeo

Research output: Contribution to journalArticlepeer-review

Abstract

Huntington’s disease (HD) is a fatal, dominantly inherited neurodegenerative disorder caused by CAG trinucleotide expansion in exon 1 of the huntingtin (HTT) gene. Since the reduction of pathogenic mutant HTT messenger RNA is therapeutic, we developed a mutant allele-sensitive CAGEX RNA-targeting CRISPR–Cas13d system (Cas13d–CAGEX) that eliminates toxic CAGEX RNA in fibroblasts derived from patients with HD and induced pluripotent stem cell-derived neurons. We show that intrastriatal delivery of Cas13d–CAGEX via an adeno-associated viral vector selectively reduces mutant HTT mRNA and protein levels in the striatum of heterozygous zQ175 mice, a model of HD. This also led to improved motor coordination, attenuated striatal atrophy and reduction of mutant HTT protein aggregates. These phenotypic improvements lasted for at least eight months without adverse effects and with minimal off-target transcriptomic effects. Taken together, we demonstrate proof of principle of an RNA-targeting CRISPR–Cas13d system as a therapeutic approach for HD, a strategy with implications for the treatment of other dominantly inherited disorders.

Original languageEnglish (US)
Pages (from-to)27-38
Number of pages12
JournalNature neuroscience
Volume26
Issue number1
DOIs
StatePublished - Jan 2023

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'An RNA-targeting CRISPR–Cas13d system alleviates disease-related phenotypes in Huntington’s disease models'. Together they form a unique fingerprint.

Cite this