An information-theoretic framework for fast and robust unsupervised learning via neural population infomax

Wentao Huang, Kechen Zhang

Research output: Contribution to conferencePaperpeer-review

4 Scopus citations

Abstract

A framework is presented for unsupervised learning of representations based on infomax principle for large-scale neural populations. We use an asymptotic approximation to the Shannon's mutual information for a large neural population to demonstrate that a good initial approximation to the global information-theoretic optimum can be obtained by a hierarchical infomax method. Starting from the initial solution, an efficient algorithm based on gradient descent of the final objective function is proposed to learn representations from the input datasets, and the method works for complete, overcomplete, and undercomplete bases. As confirmed by numerical experiments, our method is robust and highly efficient for extracting salient features from input datasets. Compared with the main existing methods, our algorithm has a distinct advantage in both the training speed and the robustness of unsupervised representation learning. Furthermore, the proposed method is easily extended to the supervised or unsupervised model for training deep structure networks.

Original languageEnglish (US)
StatePublished - 2017
Event5th International Conference on Learning Representations, ICLR 2017 - Toulon, France
Duration: Apr 24 2017Apr 26 2017

Conference

Conference5th International Conference on Learning Representations, ICLR 2017
Country/TerritoryFrance
CityToulon
Period4/24/174/26/17

ASJC Scopus subject areas

  • Education
  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'An information-theoretic framework for fast and robust unsupervised learning via neural population infomax'. Together they form a unique fingerprint.

Cite this