TY - JOUR
T1 - An improved polarized rat hepatoma hybrid cell line. Generation and comparison with its hepatoma relatives and hepatocytes in vivo
AU - Shanks, M. R.
AU - Cassio, D.
AU - Lecoq, O.
AU - Hubbard, A. L.
PY - 1994
Y1 - 1994
N2 - Studies of hepatocyte polarity, an important property of liver epithelial cells, have been hampered by the lack of valid in vitro models. We report here that a new polarized hepatoma-derived hybrid cell line, called WIF-B, has improved characteristics to those of its parent, WIF12-1. This latter line originated from the fusion of non-polarized rat hepatoma Fao cells with human fibroblasts (WI-38) and selection for a polarized phenotype. We generated the WIF-B line by growing WIF12-1 cells as unattached aggregates for three weeks and selecting for survivors. Karyotype analysis showed a broad chromosome pattern in the initial WIF-B population, but this pattern stabilized after a few passages. The growth and phenotypic properties of these cells were quite different from those of their polarized WIF12-1 parent. WIF-B cells attained a 4-fold higher maximal density in monolayer culture, survived at this density for >5 days rather than 1 day, and exhibited two to three times more apical structures during this period (80 to 95%). We compared several parameters of liver differentiation in the WIF-B cells with those of a related hybrid clone, WIF12-E, which is extinguished for most liver-specific functions, and with the common hepatoma parent, Fao. By immunoblot analysis, the levels of expression of eight plasma membrane proteins were higher in the WIF-B cells than in either of the other two cell lines and ranged from 10 to 200% of those in vivo. Two plasma membrane proteins were not detected in WIF12-E cells. By immunofluorescence, the apical membrane proteins in WIF-B displayed different cellular localizations than in either of the other two cell lines. In WIF-B cells, apical proteins were confined to a plasma membrane region that we have identified as the apical domain by several criteria. The same molecules were distributed over the entire plasma membrane of Fao and WIF12-E cells and also (for Fao cells) in intracellular punctate structures that did not colocalize with the majority of structures containing a secretory protein, albumin. Our results indicate that the WIF-B cells are more highly differentiated than any of their ancestors (Fao or WIF12-1 cells) and thus, are promising candidates for in vitro studies of hepatocyte polarity.
AB - Studies of hepatocyte polarity, an important property of liver epithelial cells, have been hampered by the lack of valid in vitro models. We report here that a new polarized hepatoma-derived hybrid cell line, called WIF-B, has improved characteristics to those of its parent, WIF12-1. This latter line originated from the fusion of non-polarized rat hepatoma Fao cells with human fibroblasts (WI-38) and selection for a polarized phenotype. We generated the WIF-B line by growing WIF12-1 cells as unattached aggregates for three weeks and selecting for survivors. Karyotype analysis showed a broad chromosome pattern in the initial WIF-B population, but this pattern stabilized after a few passages. The growth and phenotypic properties of these cells were quite different from those of their polarized WIF12-1 parent. WIF-B cells attained a 4-fold higher maximal density in monolayer culture, survived at this density for >5 days rather than 1 day, and exhibited two to three times more apical structures during this period (80 to 95%). We compared several parameters of liver differentiation in the WIF-B cells with those of a related hybrid clone, WIF12-E, which is extinguished for most liver-specific functions, and with the common hepatoma parent, Fao. By immunoblot analysis, the levels of expression of eight plasma membrane proteins were higher in the WIF-B cells than in either of the other two cell lines and ranged from 10 to 200% of those in vivo. Two plasma membrane proteins were not detected in WIF12-E cells. By immunofluorescence, the apical membrane proteins in WIF-B displayed different cellular localizations than in either of the other two cell lines. In WIF-B cells, apical proteins were confined to a plasma membrane region that we have identified as the apical domain by several criteria. The same molecules were distributed over the entire plasma membrane of Fao and WIF12-E cells and also (for Fao cells) in intracellular punctate structures that did not colocalize with the majority of structures containing a secretory protein, albumin. Our results indicate that the WIF-B cells are more highly differentiated than any of their ancestors (Fao or WIF12-1 cells) and thus, are promising candidates for in vitro studies of hepatocyte polarity.
KW - Bile canaliculi
KW - Epithelial polarity
KW - Hepatoma cell line
KW - Liver
KW - Secretory proteins
KW - membrane proteins
UR - http://www.scopus.com/inward/record.url?scp=0028230752&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028230752&partnerID=8YFLogxK
M3 - Article
C2 - 8056838
AN - SCOPUS:0028230752
SN - 0021-9533
VL - 107
SP - 813
EP - 825
JO - Journal of cell science
JF - Journal of cell science
IS - 4
ER -