TY - JOUR
T1 - An immune-competent human gut microphysiological system enables inflammation-modulation by Faecalibacterium prausnitzii
AU - Zhang, Jianbo
AU - Huang, Yu Ja
AU - Trapecar, Martin
AU - Wright, Charles
AU - Schneider, Kirsten
AU - Kemmitt, John
AU - Hernandez-Gordillo, Victor
AU - Yoon, Jun Young
AU - Poyet, Mathilde
AU - Alm, Eric J.
AU - Breault, David T.
AU - Trumper, David L.
AU - Griffith, Linda G.
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/12
Y1 - 2024/12
N2 - Crosstalk of microbes with human gut epithelia and immune cells is crucial for gut health. However, there is no existing system for a long-term co-culture of human innate immune cells with epithelium and oxygen-intolerant commensal microbes, hindering the understanding of microbe-immune interactions in a controlled manner. Here, we established a gut epithelium-microbe-immune (GuMI) microphysiological system to maintain the long-term continuous co-culture of Faecalibacterium prausnitzii/Faecalibacterium duncaniae with colonic epithelium, antigen-presenting cells (APCs, herein dendritic cells and macrophages), and CD4+ naive T cells circulating underneath the colonic epithelium. In GuMI-APC condition, multiplex cytokine assays suggested that APCs contribute to the elevated level of cytokines and chemokines secreted into both apical and basolateral compartments compared to GuMI condition that lacks APC. In GuMI-APC with F. prausnitzii (GuMI-APC-FP), F. prausnitzii increased the transcription of pro-inflammatory genes such as toll-like receptor 1 (TLR1) and interferon alpha 1 (IFNA1) in the colonic epithelium, without a significant effect on cytokine secretion, compared to the GuMI-APC without bacteria (GuMI-APC-NB). In contrast, in the presence of CD4+ naive T cells (GuMI-APCT-FP), TLR1, IFNA1, and IDO1 transcription levels decreased with a simultaneous increase in F. prausnitzii-induced secretion of pro-inflammatory cytokines (e.g., IL8) compared to GuMI-APC-FP that lacks T cells. These results highlight the contribution of individual innate immune cells in regulating the immune response triggered by the gut commensal F. prausnitzii. The integration of defined populations of immune cells in the gut microphysiological system demonstrated the usefulness of GuMI physiomimetic platform to study microbe-epithelial-immune interactions in healthy and disease conditions.
AB - Crosstalk of microbes with human gut epithelia and immune cells is crucial for gut health. However, there is no existing system for a long-term co-culture of human innate immune cells with epithelium and oxygen-intolerant commensal microbes, hindering the understanding of microbe-immune interactions in a controlled manner. Here, we established a gut epithelium-microbe-immune (GuMI) microphysiological system to maintain the long-term continuous co-culture of Faecalibacterium prausnitzii/Faecalibacterium duncaniae with colonic epithelium, antigen-presenting cells (APCs, herein dendritic cells and macrophages), and CD4+ naive T cells circulating underneath the colonic epithelium. In GuMI-APC condition, multiplex cytokine assays suggested that APCs contribute to the elevated level of cytokines and chemokines secreted into both apical and basolateral compartments compared to GuMI condition that lacks APC. In GuMI-APC with F. prausnitzii (GuMI-APC-FP), F. prausnitzii increased the transcription of pro-inflammatory genes such as toll-like receptor 1 (TLR1) and interferon alpha 1 (IFNA1) in the colonic epithelium, without a significant effect on cytokine secretion, compared to the GuMI-APC without bacteria (GuMI-APC-NB). In contrast, in the presence of CD4+ naive T cells (GuMI-APCT-FP), TLR1, IFNA1, and IDO1 transcription levels decreased with a simultaneous increase in F. prausnitzii-induced secretion of pro-inflammatory cytokines (e.g., IL8) compared to GuMI-APC-FP that lacks T cells. These results highlight the contribution of individual innate immune cells in regulating the immune response triggered by the gut commensal F. prausnitzii. The integration of defined populations of immune cells in the gut microphysiological system demonstrated the usefulness of GuMI physiomimetic platform to study microbe-epithelial-immune interactions in healthy and disease conditions.
UR - http://www.scopus.com/inward/record.url?scp=85188897919&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85188897919&partnerID=8YFLogxK
U2 - 10.1038/s41522-024-00501-z
DO - 10.1038/s41522-024-00501-z
M3 - Article
C2 - 38553449
AN - SCOPUS:85188897919
SN - 2055-5008
VL - 10
JO - npj Biofilms and Microbiomes
JF - npj Biofilms and Microbiomes
IS - 1
M1 - 31
ER -