TY - JOUR
T1 - An electromagnetic "tracker-in-Table" configuration for X-ray fluoroscopy and cone-beam CT-guided surgery
AU - Yoo, J.
AU - Schafer, S.
AU - Uneri, A.
AU - Otake, Y.
AU - Khanna, A. J.
AU - Siewerdsen, J. H.
N1 - Funding Information:
Acknowledgments The WFG was provided by collaborators at NDI (Waterloo ON), with special thanks to Mr. Jeff Stanley, Dr. Andrew Wiles, Dr. Stefan Kirsch, and Mr. Scott Illsley. The authors thank Mr. Jay O. Burns (Department of Biomedical Engineering, Johns Hopkins University) for assistance with the construction of the under-table WFG mount. The work was supported in part by academic–industry partnership with Siemens Healthcare (Erlangen, Germany) and National Institutes of Health Grant No. R01-CA-127444.
PY - 2013/1
Y1 - 2013/1
N2 - Purpose: A novel electromagnetic tracking configuration was characterized and implemented for image-guided surgery incorporating C-arm fluoroscopy and/or cone-beam CT (CBCT). The tracker employed a field generator (FG) with an open rectangular aperture and a frame enclosure with two essentially hollow sides, yielding a design that presents little or no X-ray attenuation across the C-arm orbit. The "Window" FG (WFG) was characterized in comparison with a conventional "Aurora" FG (AFG), and a configuration in which the WFG was incorporated directly into the operating table was investigated in preclinical phantom studies. Method: The geometric accuracy and field of view (FOV) of the WFG and AFG were evaluated in terms of target registration error (TRE) using an acrylic phantom on an (electromagnetic compatible) experimental bench. The WFG design was incorporated in a prototype operating table featuring a carbon fiber top beneath, which the FG could be translated for positioning under the patient. The X-ray compatibility was evaluated using a prototype mobile C-arm for fluoroscopy and CBCT in an anthropomorphic chest phantom. The susceptibility to EM field distortion associated with surgical tools (e.g., spine screws) and the C-arm itself was investigated in terms of TRE, and calibration methods were tested to provide robust image-world registration with minimal perturbation from the rotational C-arm. Results: The WFG demonstrated mean TRE of 1.28 ± 0.79 mm compared to 1.13 ± 0.72 mm for the AFG, with no statistically significant difference between the two (p = 0.32 and n = 250). The WFG exhibited a deeper field of view by ∼10 cm providing an equivalent degree of geometric accuracy to a depth of z ∼55 cm, compared to z ∼45 cm for the AFG. Although the presence of a small number of spine screws did not degrade tracker accuracy, the mobile C-arm perturbed the electromagnetic field sufficiently to degrade TRE; however, a calibration method was identified to mitigate the effect. Specifically, the average calibration between posterior-anterior and lateral orientations of the C-arm was found to yield fairly robust registration for any C-arm pose with only a slight reduction in geometric accuracy (1.43 ± 0.31 mm in comparison with 1.28 ± 0.79 mm, p = 0.05). The WFG demonstrated reasonable X-ray compatibility, although the initial design of the window frame included suboptimal material and shape of the side bars that caused a level of streak artifacts in CBCT reconstructions. The streak artifacts were of sufficient magnitude to degrade soft-tissue visibility in CBCT but were negligible in the context of high-contrast imaging tasks (e.g., bone visualization). Conclusion: The open frame of the WFG offers a potentially valuable configuration for electromagnetic trackers in image-guided surgery applications that are based on X-ray fluoroscopy and/or CBCT. The geometric accuracy and FOV are comparable to the conventional AFG and offers increased depth (z-direction) FOV. Incorporation directly within the operating table offers a streamlined implementation in which the tracker is in place but "invisible," potentially simplifying tableside logistics, avoidance of the sterile field, and compatibility with X-ray imaging.
AB - Purpose: A novel electromagnetic tracking configuration was characterized and implemented for image-guided surgery incorporating C-arm fluoroscopy and/or cone-beam CT (CBCT). The tracker employed a field generator (FG) with an open rectangular aperture and a frame enclosure with two essentially hollow sides, yielding a design that presents little or no X-ray attenuation across the C-arm orbit. The "Window" FG (WFG) was characterized in comparison with a conventional "Aurora" FG (AFG), and a configuration in which the WFG was incorporated directly into the operating table was investigated in preclinical phantom studies. Method: The geometric accuracy and field of view (FOV) of the WFG and AFG were evaluated in terms of target registration error (TRE) using an acrylic phantom on an (electromagnetic compatible) experimental bench. The WFG design was incorporated in a prototype operating table featuring a carbon fiber top beneath, which the FG could be translated for positioning under the patient. The X-ray compatibility was evaluated using a prototype mobile C-arm for fluoroscopy and CBCT in an anthropomorphic chest phantom. The susceptibility to EM field distortion associated with surgical tools (e.g., spine screws) and the C-arm itself was investigated in terms of TRE, and calibration methods were tested to provide robust image-world registration with minimal perturbation from the rotational C-arm. Results: The WFG demonstrated mean TRE of 1.28 ± 0.79 mm compared to 1.13 ± 0.72 mm for the AFG, with no statistically significant difference between the two (p = 0.32 and n = 250). The WFG exhibited a deeper field of view by ∼10 cm providing an equivalent degree of geometric accuracy to a depth of z ∼55 cm, compared to z ∼45 cm for the AFG. Although the presence of a small number of spine screws did not degrade tracker accuracy, the mobile C-arm perturbed the electromagnetic field sufficiently to degrade TRE; however, a calibration method was identified to mitigate the effect. Specifically, the average calibration between posterior-anterior and lateral orientations of the C-arm was found to yield fairly robust registration for any C-arm pose with only a slight reduction in geometric accuracy (1.43 ± 0.31 mm in comparison with 1.28 ± 0.79 mm, p = 0.05). The WFG demonstrated reasonable X-ray compatibility, although the initial design of the window frame included suboptimal material and shape of the side bars that caused a level of streak artifacts in CBCT reconstructions. The streak artifacts were of sufficient magnitude to degrade soft-tissue visibility in CBCT but were negligible in the context of high-contrast imaging tasks (e.g., bone visualization). Conclusion: The open frame of the WFG offers a potentially valuable configuration for electromagnetic trackers in image-guided surgery applications that are based on X-ray fluoroscopy and/or CBCT. The geometric accuracy and FOV are comparable to the conventional AFG and offers increased depth (z-direction) FOV. Incorporation directly within the operating table offers a streamlined implementation in which the tracker is in place but "invisible," potentially simplifying tableside logistics, avoidance of the sterile field, and compatibility with X-ray imaging.
KW - CBCT
KW - Electromagnetic tracking
KW - Image quality
KW - Intraoperative imaging
KW - Spine surgery
KW - Surgical navigation
KW - Tracking accuracy
UR - http://www.scopus.com/inward/record.url?scp=84871965340&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871965340&partnerID=8YFLogxK
U2 - 10.1007/s11548-012-0744-z
DO - 10.1007/s11548-012-0744-z
M3 - Article
C2 - 22585463
AN - SCOPUS:84871965340
SN - 1861-6410
VL - 8
SP - 1
EP - 13
JO - Computer-Assisted Radiology and Surgery
JF - Computer-Assisted Radiology and Surgery
IS - 1
ER -