Abstract
We present an all-fiber-optically based endoscope platform for simultaneous optical coherence tomography (OCT) and fluorescence imaging. This design entails the use of double-clad fiber (DCF) in the endoscope for delivery of OCT source and fluorescence excitation light while collecting the backscattered OCT signal through the single-mode core and fluorescence emission through the large inner cladding of the DCF. Circumferential beam scanning was performed by rotating a 45° reflector using a miniature DC motor at the distal end of the endoscope. Additionally, a custom DCF coupler and a wavelength division multiplexer (WDM) were utilized to seamlessly integrate both imaging modalities to achieve an entirely fiber-optically based dual-modality imaging system. We demonstrated simultaneous intraluminal 3D OCT and 2D (surface) fluorescence imaging in ex vivo rabbit esophagus using the dual-modal endomicroscopy system. Structural morphologies (provided by OCT) and fluorophore distribution (provided by the fluorescence module) could be clearly visualized, suggesting the potential of the dual-modality system for future in vivo and clinical applications.
Original language | English (US) |
---|---|
Pages (from-to) | 2851-2859 |
Number of pages | 9 |
Journal | Biomedical Optics Express |
Volume | 3 |
Issue number | 11 |
DOIs | |
State | Published - Nov 1 2012 |
ASJC Scopus subject areas
- Biotechnology
- Atomic and Molecular Physics, and Optics