Abstract
Creatine is an important metabolite involved in muscle contraction. Administration of exogenous creatine (Cr) or phosphocreatine (PCr) has been used for improving exercise performance and protecting the heart during surgery including during valve replacements, coronary artery bypass grafting and repair of congenital heart defects. In this work we investigate whether it is possible to use chemical exchange saturation transfer (CEST) MRI to monitor uptake and clearance of exogenous creatine and phosphocreatine following supplementation. We were furthermore interested in determining the limiting conditions for distinguishing between creatine (1.9 ppm) and phosphocreatine (2.6 ppm) signals at ultra-high fields (21 T) and determine their concentrations could be reliably obtained using Bloch equation fits of the experimental CEST spectra. We have tested these items by performing CEST MRI of hind limb muscle and kidneys at 11.7 T and 21.1 T both before and after intravenous administration of PCr. We observed up to 4% increase in contrast in the kidneys at 2.6 ppm which peaked ~30 min after administration and a relative ratio of 1.3 in PCr:Cr signal. Overall, these results demonstrate the feasibility of independent monitoring of PCr and Cr concentration changes using CEST MRI.
Original language | English (US) |
---|---|
Article number | 106703 |
Journal | Journal of Magnetic Resonance |
Volume | 313 |
DOIs | |
State | Published - Apr 2020 |
Keywords
- CEST imaging
- Creatine
- Magnetic resonance imaging
- Molecular imaging
ASJC Scopus subject areas
- Biophysics
- Biochemistry
- Nuclear and High Energy Physics
- Condensed Matter Physics