Amelioration of autoimmune reactions by antigen-induced apoptosis of T cells

H. I. McFarland, J. M. Critchfield, M. K. Racke, J. P. Mueller, S. H. Nye, S. A. Boehme, M. J. Lenardo

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

We have shown that T cells vigorously cycling in response to growth lymphokines are driven into apoptosis by potent TCR restimulation. This process, termed propriocidal regulation, appears to be a normal feedback inhibitory mechanism to prevent excessive T cell proliferation and lymphokine production. Exposure of T cells to repeated high dose antigen treatments creates the conditions just described by activating T cells, and stimulating the production of growth lymphokines and their receptors. High growth lymphokine levels induced by the large amount of antigen present, stimulate vigorous cycling. The continued presence of high antigen levels subjects the cycling T cells to strong TCR restimulation as they enter the vulnerable S phase, inducing apoptosis in T cells responsive to the administered antigen. Thus, simple, repetitive, intravenous administration of high dose antigen may be used to delete potentially destructive clones of T cells, resulting in a state of peripheral tolerance. This has obvious therapeutic potential in disorders where the elimination of pathogenic T cell clones could be beneficial. We have described in EAE, an animal model for MS, that high dose MBP therapy is effective in preventing CNS pathology and the onset of disease as well as reducing the severity of the clinical symptoms of established EAE. We are currently involved in expanding this approach to other animal models of autoimmunity and graft rejection, as well as refining the immunotherapy in the EAE model with the objective of developing a clinical therapy for human demyelinating disease.

Original languageEnglish (US)
Pages (from-to)157-166
Number of pages10
JournalAdvances in Experimental Medicine and Biology
Volume383
StatePublished - 1995
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint

Dive into the research topics of 'Amelioration of autoimmune reactions by antigen-induced apoptosis of T cells'. Together they form a unique fingerprint.

Cite this