Abstract
Background: Hazard identification, risk assessment, regulatory, and policy activity are usually conducted on a chemical-by-chemical basis. Grouping chemicals into categories or classes is an underutilized approach that could make risk assessment and management of chemicals more efficient for regulators. Objective and methods: While there are some available methods and regulatory frameworks that include the grouping of chemicals (e.g.,same molecular mechanism or similar chemical structure) there has not been a comprehensive evaluation of these different approaches nor a recommended course of action to better consider chemical classes in decision-making. This manuscript: 1) reviews current national and international approaches to grouping; 2) describes how groups could be defined based on the decision context (e.g., hazard/risk assessment, restrictions, prioritization, product development) and scientific considerations (e.g., intrinsic physical-chemical properties); 3) discusses advantages of developing a decision tree approach for grouping; 4) uses ortho-phthalates as a case study to identify and organize frameworks that could be used across agencies; and 5) discusses opportunities to advance the class concept within various regulatory decision-making scenarios. Results: Structural similarity was the most common grouping approach for risk assessment among regulatory agencies (national and state level) and non-regulatory organizations, albeit with some variations in its definition. Toxicity to the same target organ or to the same biological function was also used in a few cases. The phthalates case study showed that a decision tree approach for grouping should include questions about uses regulated by other agencies to encourage more efficient, coherent, and protective chemical risk management. Discussion and conclusion: Our evaluation of how classes of chemicals are defined and used identified commonalities and differences based on regulatory frameworks, risk assessments, and business strategies. We also identified that using a class-based approach could result in a more efficient process to reduce exposures to multiple hazardous chemicals and, ultimately, reduce health risks. We concluded that, in the absence of a prescribed method, a decision tree approach could facilitate the selection of chemicals belonging to a pre-defined class (e.g., chemicals with endocrine-disrupting activity; organohalogen flame retardants [OFR]) based on the decision-making context (e.g., regulatory risk management).
Original language | English (US) |
---|---|
Article number | 120 |
Journal | Environmental Health: A Global Access Science Source |
Volume | 21 |
DOIs | |
State | Published - Jan 2023 |
Keywords
- Chemical class
- Chemical grouping
- Decision-making
- Ortho-phthalates
- Regulation
- Risk assessment
- Toxic chemicals
ASJC Scopus subject areas
- Public Health, Environmental and Occupational Health
- Health, Toxicology and Mutagenesis