Adenosine-induced activation of esophageal nociceptors

F. Ru, L. Surdenikova, M. Brozmanova, M. Kollarik

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

Clinical studies implicate adenosine acting on esophageal nociceptive pathways in the pathogenesis of noncardiac chest pain originating from the esophagus. However, the effect of adenosine on esophageal afferent nerve subtypes is incompletely understood. We addressed the hypothesis that adenosine selectively activates esophageal nociceptors. Whole cell perforated patch-clamp recordings and single-cell RT-PCR analysis were performed on the primary afferent neurons retrogradely labeled from the esophagus in the guinea pig. Extracellular recordings were made from the isolated innervated esophagus. In patch-clamp studies, adenosine evoked activation (inward current) in a majority of putative nociceptive (capsaicin-sensitive) vagal nodose, vagal jugular, and spinal dorsal root ganglia (DRG) neurons innervating the esophagus. Single-cell RT-PCR analysis indicated that the majority of the putative nociceptive (transient receptor potential V1-positive) neurons innervating the esophagus express the adenosine receptors. The neural crest-derived (spinal DRG and vagal jugular) esophageal nociceptors expressed predominantly the adenosine A1 receptor while the placodes- derived vagal nodose nociceptors expressed the adenosine A1 and/or A2A receptors. Consistent with the studies in the cell bodies, adenosine evoked activation (overt action potential discharge) in esophageal nociceptive nerve terminals. Furthermore, the neural crestderived jugular nociceptors were activated by the selective A1 receptor agonist CCPA, and the placodes-derived nodose nociceptors were activated by CCPA and/or the selective adenosine A2A receptor CGS-21680. In contrast to esophageal nociceptors, adenosine failed to stimulate the vagal esophageal low-threshold (tension) mechanosensors. We conclude that adenosine selectively activates esophageal nociceptors. Our data indicate that the esophageal neural crest-derived nociceptors can be activated via the adenosine A1 receptor while the placodes-derived esophageal nociceptors can be activated via A1 and/or A2A receptors. Direct activation of esophageal nociceptors via adenosine receptors may contribute to the symptoms in esophageal diseases.

Original languageEnglish (US)
Pages (from-to)485-493
Number of pages9
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Volume300
Issue number3
DOIs
StatePublished - Mar 2011

Keywords

  • Adenosine
  • Esophagus
  • Nociception

ASJC Scopus subject areas

  • Physiology
  • Hepatology
  • Gastroenterology
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Adenosine-induced activation of esophageal nociceptors'. Together they form a unique fingerprint.

Cite this