Acid sensitivity of the spinal dorsal root ganglia C-fiber nociceptors innervating the guinea pig esophagus

F. Ru, P. Banovcin, Marian Kollarik

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Background: Gastroesophageal reflux can cause high acidity in the esophagus and trigger heartburn and pain. However, because of the esophageal mucosal barrier, the acidity at the nerve terminals of pain-mediating C-fibers in esophageal mucosa is predicted to be substantially lower. We hypothesized that the esophageal dorsal root ganglia (DRG) C-fibers are activated by mild acid (compared to acidic reflux), and express receptors and ion channels highly sensitive to acid. Methods: Extracellular single unit recordings of activity originating in esophageal DRG C-fiber nerve terminals were performed in the innervated esophagus preparation ex vivo. Acid was delivered in a manner that bypassed the esophageal mucosal barrier. The expression of mRNA for selected receptors in esophagus-specific DRG neurons was evaluated using single cell RT-PCR. Key Results: Mild acid (pH = 6.5-5.5) activated esophageal DRG C-fibers in a pH-dependent manner. The response to mild acid at pH = 6 was not affected by the TRPV1 selective antagonist iodo-resiniferatoxin. The majority (70-95%) of esophageal DRG C-fiber neurons (TRPV1-positive) expressed mRNA for acid sensing ion channels (ASIC1a, ASIC1b, ASIC2b, and/or ASIC3), two-pore-domain (K2P) potassium channel TASK1, and the proton-sensing G-protein coupled receptor OGR1. Other evaluated targets (PKD2L1, TRPV4, TASK3, TALK1, G2A, GPR4, and TDAG8) were expressed rarely. Conclusions & Inferences: Guinea pig esophageal DRG C-fibers are activated by mild acid via a TRPV1-independent mechanism, and express mRNA for several receptors and ion channels highly sensitive to acid. The high acid sensitivity of esophageal C-fibers may contribute to heartburn and pain in conditions of reduced mucosal barrier function.

Original languageEnglish (US)
Pages (from-to)865-874
Number of pages10
JournalNeurogastroenterology and Motility
Volume27
Issue number6
DOIs
StatePublished - Jun 1 2015

Keywords

  • Acid sensing
  • Esophagus
  • Nociceptor
  • Pain

ASJC Scopus subject areas

  • Physiology
  • Endocrine and Autonomic Systems
  • Gastroenterology

Fingerprint

Dive into the research topics of 'Acid sensitivity of the spinal dorsal root ganglia C-fiber nociceptors innervating the guinea pig esophagus'. Together they form a unique fingerprint.

Cite this