Accurate classification of schizophrenia patients based on novel resting-state fMRI features

Mohammad R. Arbabshirani, Eduardo Castro, Vince D. Calhoun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Scopus citations

Abstract

There is a growing interest in automatic classification of mental disorders such as schizophrenia based on neuroimaging data. Most previous studies considered structural MRI, diffusion tensor imaging and task-based fMRI for this purpose. However, resting-state fMRI data has not been used much to evaluate discrimination of schizophrenia patients from healthy controls. Resting data are of great interest, since they are relatively easy to collect, and not confounded by behavioral performance on a task. In this study, we extract two types of features from resting-state fMRI data: functional network connectivity features that capture internetwork connectivity patterns and autoconnectivity features capturing temporal connectivity of each brain network. Autoconnectivity is a novel concept we have recently proposed. We used minimum redundancy maximum relevancy to select features. Classification results using support vector machine shows that combining these two types of features can improve the classification on a large resting fMRI dataset consisting of 195 patients with schizophrenia and 175 healthy controls. We achieved the accuracy of 85% which is very promising.

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6691-6694
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period8/26/148/30/14

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • General Medicine

Fingerprint

Dive into the research topics of 'Accurate classification of schizophrenia patients based on novel resting-state fMRI features'. Together they form a unique fingerprint.

Cite this