TY - JOUR
T1 - Accelerating whole-heart 3D T2 mapping
T2 - Impact of undersampling strategies and reconstruction techniques
AU - Zhu, Dan
AU - Ding, Haiyan
AU - Muz Zviman, M.
AU - Halperin, Henry
AU - Schär, Michael
AU - Herzka, Daniel A.
N1 - Funding Information:
Funding: \This work was supported in part by two grants from the American Heart Association (Grant 11SDG5280025, Grant 17SDG33671007).
Publisher Copyright:
Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
PY - 2021/9
Y1 - 2021/9
N2 - Purpose We aim to determine an advantageous approach for the acceleration of high spatial resolution 3D cardiac T2 relaxometry data by comparing the performance of different undersampling patterns and reconstruction methods over a range of acceleration rates. Methods Multi-volume 3D high-resolution cardiac images were acquired fully and undersampled retrospectively using 1) optimal CAIPIRINHA and 2) a variable density random (VDR) sampling. Data were reconstructed using 1) multi-volume sensitivity encoding (SENSE), 2) joint-sparsity SENSE and 3) model-based SENSE. Four metrics were calculated on 3 naïve swine and 8 normal human subjects over a whole left-ventricular region of interest: root-mean-square error (RMSE) of image signal intensity, RMSE of T2, the bias of mean T2, and standard deviation (SD) of T2. Fully sampled data and volume-by-volume SENSE with standard equally spaced undersampling were used as references. The Jaccard index calculated from one swine with acute myocardial infarction (MI) was used to demonstrate preservation of segmentation of edematous tissues with elevated T2. Results In naïve swine and normal human subjects, all methods had similar performance when the net reduction factor (Rnet) <2.5. VDR sampling with model-based SENSE showed the lowest RMSEs (10.5%-14.2%) and SDs (+1.7–2.4 ms) of T2 when Rnet>2.5, while VDR sampling with the joint-sparsity SENSE had the lowest bias of mean T2 (0.0–1.1ms) when Rnet>3. The RMSEs of parametric T2 values (9.2%-24.6%) were larger than for image signal intensities (5.2%-18.4%). In the swine with MI, VDR sampling with either joint-sparsity or model-based SENSE showed consistently higher Jaccard index for all Rnet (0.71–0.50) than volume-by-volume SENSE (0.68–0.30). Conclusions Retrospective exploration of undersampling and reconstruction in 3D whole-heart T2 parametric mapping revealed that maps were more sensitive to undersampling than images, presenting a more stringent limiting factor on Rnet. The combination of VDR sampling patterns with model-based or joint-sparsity SENSE reconstructions were more robust for Rnet>3.
AB - Purpose We aim to determine an advantageous approach for the acceleration of high spatial resolution 3D cardiac T2 relaxometry data by comparing the performance of different undersampling patterns and reconstruction methods over a range of acceleration rates. Methods Multi-volume 3D high-resolution cardiac images were acquired fully and undersampled retrospectively using 1) optimal CAIPIRINHA and 2) a variable density random (VDR) sampling. Data were reconstructed using 1) multi-volume sensitivity encoding (SENSE), 2) joint-sparsity SENSE and 3) model-based SENSE. Four metrics were calculated on 3 naïve swine and 8 normal human subjects over a whole left-ventricular region of interest: root-mean-square error (RMSE) of image signal intensity, RMSE of T2, the bias of mean T2, and standard deviation (SD) of T2. Fully sampled data and volume-by-volume SENSE with standard equally spaced undersampling were used as references. The Jaccard index calculated from one swine with acute myocardial infarction (MI) was used to demonstrate preservation of segmentation of edematous tissues with elevated T2. Results In naïve swine and normal human subjects, all methods had similar performance when the net reduction factor (Rnet) <2.5. VDR sampling with model-based SENSE showed the lowest RMSEs (10.5%-14.2%) and SDs (+1.7–2.4 ms) of T2 when Rnet>2.5, while VDR sampling with the joint-sparsity SENSE had the lowest bias of mean T2 (0.0–1.1ms) when Rnet>3. The RMSEs of parametric T2 values (9.2%-24.6%) were larger than for image signal intensities (5.2%-18.4%). In the swine with MI, VDR sampling with either joint-sparsity or model-based SENSE showed consistently higher Jaccard index for all Rnet (0.71–0.50) than volume-by-volume SENSE (0.68–0.30). Conclusions Retrospective exploration of undersampling and reconstruction in 3D whole-heart T2 parametric mapping revealed that maps were more sensitive to undersampling than images, presenting a more stringent limiting factor on Rnet. The combination of VDR sampling patterns with model-based or joint-sparsity SENSE reconstructions were more robust for Rnet>3.
UR - http://www.scopus.com/inward/record.url?scp=85114721490&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85114721490&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0252777
DO - 10.1371/journal.pone.0252777
M3 - Article
C2 - 34506496
AN - SCOPUS:85114721490
SN - 1932-6203
VL - 16
JO - PloS one
JF - PloS one
IS - 9 September
M1 - e0252777
ER -