Abstract
The Siglec family of cell surface receptors have emerged as attractive targets for cell-directed therapies due to their restricted expression on immune cells, endocytic properties, and ability to modulate receptor signaling. Human Siglec-8, for instance, has been identified as a therapeutic target for the treatment of eosinophil and mast cell disorders. A promising strategy to target Siglecs involves the use of liposomal nanoparticles with a multivalent display of Siglec ligands. A key challenge for this approach is the identification of a high affinity ligand for the target Siglec. Here, we report the development of a ligand of Siglec-8 and its closest murine functional orthologue Siglec-F that is capable of targeting liposomes to cells expressing Siglec-8 or-F. A glycan microarray library of synthetic 9-N-sulfonyl sialoside analogues was screened to identify potential lead compounds. The best ligand, 9-N-(2-naphthyl-sulfonyl)-Neu5Acα2-3-[6-O-sulfo]-Galβ1-4GlcNAc (6′-O-sulfo NSANeu5Ac) combined the lead 2-naphthyl sulfonyl C-9 substituent with the preferred sulfated scaffold. The ligand 6′-O-sulfo NSANeu5Ac was conjugated to lipids for display on liposomes to evaluate targeted delivery to cells. Targeted liposomes showed strong in vitro binding/uptake and selectivity to cells expressing Siglec-8 or-F and, when administered to mice, exhibit in vivo targeting to Siglec-F+ eosinophils.
Original language | English (US) |
---|---|
Pages (from-to) | 14032-14037 |
Number of pages | 6 |
Journal | Journal of the American Chemical Society |
Volume | 141 |
Issue number | 36 |
DOIs | |
State | Published - Sep 11 2019 |
ASJC Scopus subject areas
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry