Abstract
Bacterial modular polyketide synthase (PKS) genes are commonly associated with another gene that encodes a thioesterase II (TEII) believed to remove aberrantly loaded substrates from the PKS. Co-expression of the Saccharopolyspora erythraea ery-ORF5 TEII and eryA genes encoding 6-deoxyerythronolide B synthase (DEBS) in Streptomyces hosts eliminated or significantly lowered production of 8,8′-deoxyoleandolide [15-nor-6-deoxyerythronolide B (15-nor-6dEB ], which arises from an acetate instead of a propionate starter unit. Disruption of the TEII gene in an industrial Sac. erythraea strain caused a notable amount of 15-norerythromycins to be produced by utilization of an acetate instead of a propionate starter unit and also resulted in moderately lowered production of erythromycin compared with the amount produced by the parental strain. A similar behaviour of the TEII gene was observed in Escherichia coli strains that produce 6dEB and 15-methyl-6dEB. Direct biochemical analysis showed that the ery-ORF5 TEII enzyme favours hydrolysis of acetyl groups bound to the loading acyl carrier protein domain (ACPL) of DEBS. These results point to a clear role of the TEII enzyme, i.e. removal of a specific type of acyl group from the ACPL domain of the DEBS1 loading module.
Original language | English (US) |
---|---|
Pages (from-to) | 2213-2225 |
Number of pages | 13 |
Journal | Microbiology |
Volume | 149 |
Issue number | 8 |
DOIs | |
State | Published - Aug 1 2003 |
Externally published | Yes |
ASJC Scopus subject areas
- Microbiology