Abstract
Objective: Needle insertion is a common component of most diagnostic and therapeutic interventions. Needles with asymmetrically sharpened points such as the bevel point are ubiquitous. Their insertion path is typically curved due to the rudder effect at the point. However, the common planned path is straight, leading to targeting errors. We present a simple technique that may substantially reduce these errors. The method was inspired by practical experience, conceived mathematically, and refined experimentally. Methods: Targeting errors are reduced by flipping the bevel on the opposite side (rotating the needle 180° about its axis), at a certain depth during insertion. The ratio of the flip depth to the full depth of insertion is defined as the flip depth ratio (FDR). Based on a model, FDR is constant 0.3. Results: Experimentally, the ratio depends on the needle diameter, 0.35 for 20Ga and 0.45 for 18Ga needles. Thinner needles should be flipped a little shallower, but never less than 0.3. Conclusion: Practically, a physician may expect to reduce ∼80% of needle deflection errors by simply flipping the needle. The technique may be used by hand or with guidance devices.
Original language | English (US) |
---|---|
Pages (from-to) | 199-205 |
Number of pages | 7 |
Journal | Minimally Invasive Therapy and Allied Technologies |
Volume | 28 |
Issue number | 4 |
DOIs | |
State | Published - Jul 4 2019 |
Keywords
- Needle deflection
- needle insertion
- needle model
- needle steering
ASJC Scopus subject areas
- Surgery