A search for genes that may confer divergent morphology and function in the carotid body between two strains of mice

Alexander Balbir, Hannah Lee, Mariko Okumura, Shyam Biswal, Robert S. Fitzgerald, Machiko Shirahata

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


The carotid body (CB) is the primary hypoxic chemosensory organ. Its hypoxic response appears to be genetically controlled. We have hypothesized that: 1) genes related to CB function are expressed less in the A/J mice (low responder to hypoxia) compared with DBA/2J mice (high responder to hypoxia); and 2) gene expression levels of morphogenic and trophic factors of the CB are significantly lower in the A/J mice than DBA/2J mice. This study utilizes microarray analysis to test these hypotheses. Three sets of CBs were harvested from both strains. RNA was isolated and used for global gene expression profiling (Affymetrix Mouse 430 v2.0 array). Statistically significant gene expression was determined as a minimum six counts of nine pairwise comparisons, a minimum 1.5-fold change, and P ≤ 0.05. Our results demonstrated that 793 genes were expressed less and that 568 genes were expressed more in the A/J strain vs. the DBA/2J strain. Analysis of individual genes indicates that genes encoding ion channels are differentially expressed between the two strains. Genes related to neurotransmitter metabolism, synaptic vesicles, and the development of neural crest-derived cells are expressed less in the A/J CB vs. the DBA/2J CB. Through pathway analysis, we have constructed a model that shows gene interactions and offers a roadmap to investigate CB development and hypoxic chemosensing/chemotransduction processes. Particularly, Gdnf, Bmp2, Kcnmb2, Tph1, Hif1a, and Arnt2 may contribute to the functional differences in the CB between the two strains. Bmp2, Phox2b, Dlx2, and Msx2 may be important for the morphological differences.

Original languageEnglish (US)
Pages (from-to)L704-L715
JournalAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
Issue number3
StatePublished - Mar 2007


  • Development
  • Glomus cell
  • Hypoxia
  • Microarray

ASJC Scopus subject areas

  • Physiology
  • Pulmonary and Respiratory Medicine
  • Physiology (medical)
  • Cell Biology


Dive into the research topics of 'A search for genes that may confer divergent morphology and function in the carotid body between two strains of mice'. Together they form a unique fingerprint.

Cite this