A phenomics approach in yeast links proton and calcium pump function in the Golgi

Jyoti Yadav, Sabina Muend, Yongqiang Zhang, Rajini Rao

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

The Golgi-localized Ca2+- and Mn2+-transporting ATPase Pmr1 is important for secretory pathway functions. Yeast mutants lacking Pmr1 show growth sensitivity to multiple drugs (amiodarone, wortmannin, sulfometuron methyl, and tunicamycin) and ions (Mn2+ and Ca 2+). To find components that function within the same or parallel cellular pathways as Pmr1, we identified genes that shared multiple pmr1 phenotypes. These genes were enriched in functional categories of cellular transport and interaction with cellular environment, and predominantly localize to the endomembrane system. The vacuolar-type H+-transporting ATPase (V-ATPase), rather than other Ca2+ transporters, was found to most closely phenocopy pmr1Δ, including a shared sensitivity to Zn2+ and calcofluor white. However, we show that pmr1Δ mutants maintain normal vacuolar and prevacuolar pH and that the two transporters do not directly influence each other's activity. Together with a synthetic fitness defect of pmr1ΔvmaΔ double mutants, this suggests that Pmr1 and V-ATPase work in parallel toward a common function. Overlaying data sets of growth sensitivities with functional screens (carboxypeptidase secretion and Alcian Blue binding) revealed a common set of genes relating to Golgi function. We conclude that overlapping phenotypes with Pmr1 reveal Golgi-localized functions of the V-ATPase and emphasize the importance of calcium and proton transport in secretory/prevacuolar traffic.

Original languageEnglish (US)
Pages (from-to)1480-1489
Number of pages10
JournalMolecular biology of the cell
Volume18
Issue number4
DOIs
StatePublished - Apr 2007

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'A phenomics approach in yeast links proton and calcium pump function in the Golgi'. Together they form a unique fingerprint.

Cite this