TY - JOUR
T1 - A novel role of protein tyrosine kinase2 in mediating chloride secretion in human airway epithelial cells
AU - Liang, Lihua
AU - Woodward, Owen M.
AU - Chen, Zhaohui
AU - Cotter, Robert
AU - Guggino, William B.
PY - 2011
Y1 - 2011
N2 - Ca 2+ activated Cl - channels (CaCC) are up-regulated in cystic fibrosis (CF) airway surface epithelia. The presence and functional properties of CaCC make it a possible therapeutic target to compensate for the deficiency of Cl - secretion in CF epithelia. CaCC is activated by an increase in cytosolic Ca 2+, which not only activates epithelial CaCCs, but also inhibits epithelial Na + hyperabsorption, which may also be beneficial in CF. Our previous study has shown that spiperone, a known antipsychotic drug, activates CaCCs and stimulates Cl - secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro, and in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) knockout mice in vivo. Spiperone activates CaCC not by acting in its well-known role as an antagonist of either 5-HT2 or D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Moreover, spiperone independently activates CFTR through a novel mechanism. Herein, we performed a mass spectrometry analysis and identified the signaling molecule that mediates the spiperone effect in activating chloride secretion through CaCC and CFTR. Proline-rich tyrosine kinase 2 (PYK2) is a non-receptor protein tyrosine kinase, which belongs to the focal adhesion kinase family. The inhibition of PYK2 notably reduced the ability of spiperone to increase intracellular Ca 2+ and Cl - secretion. In conclusion, we have identified the tyrosine kinase, PYK2, as the modulator, which plays a crucial role in the activation of CaCC and CFTR by spiperone. The identification of this novel role of PYK2 reveals a new signaling pathway in human airway epithelial cells.
AB - Ca 2+ activated Cl - channels (CaCC) are up-regulated in cystic fibrosis (CF) airway surface epithelia. The presence and functional properties of CaCC make it a possible therapeutic target to compensate for the deficiency of Cl - secretion in CF epithelia. CaCC is activated by an increase in cytosolic Ca 2+, which not only activates epithelial CaCCs, but also inhibits epithelial Na + hyperabsorption, which may also be beneficial in CF. Our previous study has shown that spiperone, a known antipsychotic drug, activates CaCCs and stimulates Cl - secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro, and in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) knockout mice in vivo. Spiperone activates CaCC not by acting in its well-known role as an antagonist of either 5-HT2 or D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Moreover, spiperone independently activates CFTR through a novel mechanism. Herein, we performed a mass spectrometry analysis and identified the signaling molecule that mediates the spiperone effect in activating chloride secretion through CaCC and CFTR. Proline-rich tyrosine kinase 2 (PYK2) is a non-receptor protein tyrosine kinase, which belongs to the focal adhesion kinase family. The inhibition of PYK2 notably reduced the ability of spiperone to increase intracellular Ca 2+ and Cl - secretion. In conclusion, we have identified the tyrosine kinase, PYK2, as the modulator, which plays a crucial role in the activation of CaCC and CFTR by spiperone. The identification of this novel role of PYK2 reveals a new signaling pathway in human airway epithelial cells.
UR - http://www.scopus.com/inward/record.url?scp=79960203340&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79960203340&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0021991
DO - 10.1371/journal.pone.0021991
M3 - Article
C2 - 21765932
AN - SCOPUS:79960203340
SN - 1932-6203
VL - 6
JO - PloS one
JF - PloS one
IS - 7
M1 - e21991
ER -