TY - JOUR
T1 - A novel method to quantify IRDye800CW fluorescent antibody probes ex vivo in tissue distribution studies
AU - Oliveira, Sabrina
AU - Cohen, Ruth
AU - van Walsum, Marijke Stigter
AU - van Dongen, Guus A.M.S.
AU - Elias, Sjoerd G.
AU - van Diest, Paulus Joannes
AU - Mali, Willem
AU - van Paul, M. P.
AU - Henegouwen, Bergenen
N1 - Funding Information:
We would like to thank Dr. Alex Poot and Ing. Mies van Steenbergen for their contributions. This research was supported by the Center for Translational Molecular Medicine (MAMMOTH project) and by the Dutch Cancer Society (research fellowship to S.G.E).
PY - 2012
Y1 - 2012
N2 - Background: We describe a new method for biodistribution studies with IRDye800CW fluorescent antibody probes. This method allows the quantification of the IRDye800CW fluorescent tracer in percentage of injected dose per gram of tissue (% ID/g), and it is herein compared to the generally used reference method that makes use of radioactivity. Methods: Cetuximab was conjugated to both the near-infrared fluorophore IRDye800CW and/or the positron emitter 89-zirconium, which was injected in nude mice bearing A431 human tumor xenografts. Positron emission tomography (PET) and optical imaging were performed 24 h post-injection (p.i.). For the biodistribution study, organs and tumors were collected 24 h p.i., and each of these was halved. One half was used for the determination of probe uptake by radioactivity measurement. The other half was homogenized, and the content of the fluorescent probe was determined by extrapolation from a calibration curve made with the injected probe. Results: Tumors were clearly visualized with both modalities, and the calculated tumor-to-normal tissue ratios were very similar for optical and PET imaging: 3.31 ± 1.09 and 3.15 ± 0.99, respectively. Although some variations were observed in ex vivo analyses, tumor uptake was within the same range for IRDye800CW and gamma ray quantification: 15.07 ± 3.66% ID/g and 13.92 ± 2.59% ID/g, respectively. Conclusions: The novel method for quantification of the optical tracer IRDye800CW gives similar results as the reference method of gamma ray quantification. This new method is considered very useful in the context of the preclinical development of IRDye800CW fluorescent probes for optical molecular imaging, likely contributing to the selection of lead compounds that are the most promising for clinical translation.
AB - Background: We describe a new method for biodistribution studies with IRDye800CW fluorescent antibody probes. This method allows the quantification of the IRDye800CW fluorescent tracer in percentage of injected dose per gram of tissue (% ID/g), and it is herein compared to the generally used reference method that makes use of radioactivity. Methods: Cetuximab was conjugated to both the near-infrared fluorophore IRDye800CW and/or the positron emitter 89-zirconium, which was injected in nude mice bearing A431 human tumor xenografts. Positron emission tomography (PET) and optical imaging were performed 24 h post-injection (p.i.). For the biodistribution study, organs and tumors were collected 24 h p.i., and each of these was halved. One half was used for the determination of probe uptake by radioactivity measurement. The other half was homogenized, and the content of the fluorescent probe was determined by extrapolation from a calibration curve made with the injected probe. Results: Tumors were clearly visualized with both modalities, and the calculated tumor-to-normal tissue ratios were very similar for optical and PET imaging: 3.31 ± 1.09 and 3.15 ± 0.99, respectively. Although some variations were observed in ex vivo analyses, tumor uptake was within the same range for IRDye800CW and gamma ray quantification: 15.07 ± 3.66% ID/g and 13.92 ± 2.59% ID/g, respectively. Conclusions: The novel method for quantification of the optical tracer IRDye800CW gives similar results as the reference method of gamma ray quantification. This new method is considered very useful in the context of the preclinical development of IRDye800CW fluorescent probes for optical molecular imaging, likely contributing to the selection of lead compounds that are the most promising for clinical translation.
KW - Antibodies
KW - Biodistribution studies
KW - EGFR
KW - Optical molecular imaging
KW - Tracer quantification
UR - http://www.scopus.com/inward/record.url?scp=84871717195&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871717195&partnerID=8YFLogxK
U2 - 10.1186/2191-219X-2-50
DO - 10.1186/2191-219X-2-50
M3 - Article
C2 - 23009555
AN - SCOPUS:84871717195
SN - 2191-219X
VL - 2
SP - 1
EP - 9
JO - EJNMMI Research
JF - EJNMMI Research
IS - 1
M1 - 50
ER -