A new post-phase rotation based dynamic receive beamforming architecture for smartphone-based wireless ultrasound imaging

Minsuk Park, Jeeun Kang, Gunho Lee, Min Kim, Tai Kyong Song

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Recently, a portable US imaging system using smart devices is highlighted for enhancing the portability of diagnosis. Especially, the system combination can enhance the user experience during whole US diagnostic procedures by employing the advanced wireless communication technology integrated in a smart device, e.g., WiFi, Bluetooth, etc. In this paper, an effective post-phase rotation-based dynamic receive beamforming (PRBF-POST) method is presented for wireless US imaging device integrating US probe system and commercial smart device. In conventional, the frame rate of conventional PRBF (PRBF-CON) method suffers from the large amount of calculations for the bifurcated processing paths of in-phase and quadrature signal components as the number of channel increase. Otherwise, the proposed PRBF-POST method can preserve the frame rate regardless of the number of channels by firstly aggregating the baseband IQ data along the channels whose phase quantization levels are identical ahead of phase rotation and summation procedures on a smart device. To evaluate the performance of the proposed PRBF-POST method, the pointspread functions of PRBF-CON and PRBF-POST methods were compared each other. Also, the frame rate of each PRBF method was measured 20-Times to calculate the average frame rate and its standard deviation. As a result, the PRBFCON and PRBF-POST methods indicates identical beamforming performance in the Field-II simulation (correlation coefficient = 1). Also, the proposed PRBF-POST method indicates the consistent frame rate for varying number of channels (i.e., 44.25, 44.32, and 44.35 fps for 16, 64, and 128 channels, respectively), while the PRBF-CON method shows the decrease of frame rate as the number of channel increase (39.73, 13.19, and 3.8 fps). These results indicate that the proposed PRBF-POST method can be more advantageous for implementing the wireless US imaging system than the PRBF-CON method.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2016
Subtitle of host publicationUltrasonic Imaging and Tomography
EditorsBrecht Heyde, Brecht Heyde, Neb Duric
ISBN (Electronic)9781510600256
StatePublished - 2016
Externally publishedYes
EventMedical Imaging 2016: Ultrasonic Imaging and Tomography - San Diego, United States
Duration: Feb 28 2016Feb 29 2016

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


OtherMedical Imaging 2016: Ultrasonic Imaging and Tomography
Country/TerritoryUnited States
CitySan Diego


  • mobile GPU
  • phase rotation dynamic receive beamforming
  • wireless ultrasound

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'A new post-phase rotation based dynamic receive beamforming architecture for smartphone-based wireless ultrasound imaging'. Together they form a unique fingerprint.

Cite this