TY - JOUR
T1 - A mutagenesis study of autoantigen optimization for potential T1D vaccine design
AU - Song, Yi
AU - Bell, David R.
AU - Ahmed, Rizwan
AU - Chan, Kevin C.
AU - Lee, Sangyun
AU - Hamad, Abdel Rahim A.
AU - Zhou, Ruhong
N1 - Publisher Copyright:
Copyright © 2023 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
PY - 2023/4/18
Y1 - 2023/4/18
N2 - A previously reported autoreactive antigen, termed the X-idiotype, isolated from a unique cell population in Type 1 diabetes (T1D) patients, was found to stimulate their CD4+ T cells. This antigen was previously determined to bind more favorably than insulin and its mimic (insulin superagonist) to HLA-DQ8, supporting its strong role in CD4+ T cell activation. In this work, we probed HLA-X-idiotype-TCR binding and designed enhanced-reactive pHLA-TCR antigens using an in silico mutagenesis approach which we functionally validated by cell proliferation assays and flow cytometry. From a combination of single, double, and swap mutations, we identified antigen-binding sites p4 and p6 as potential mutation sites for HLA binding affinity enhancement. Site p6 is revealed to favor smaller but more hydrophobic residues than the native tyrosine, such as valine (Y6V) and isoleucine (Y6I), indicating a steric mechanism in binding affinity improvement. Meanwhile, site p4 methionine mutation to hydrophobic residues isoleucine (M4I) or leucine (M4L) modestly increases HLA binding affinity. Select p6 mutations to cysteine (Y6C) or isoleucine (Y6I) exhibit favorable TCR binding affinities, while a swap p5-p6 tyrosine-valine double mutant (V5Y_Y6V) and a p6-p7 glutamine-glutamine double mutant (Y6Q_Y7Q) exhibit enhanced HLA binding affinity but weakened TCR affinity. This work holds relevance to potential T1D antigen-based vaccine design and optimization.
AB - A previously reported autoreactive antigen, termed the X-idiotype, isolated from a unique cell population in Type 1 diabetes (T1D) patients, was found to stimulate their CD4+ T cells. This antigen was previously determined to bind more favorably than insulin and its mimic (insulin superagonist) to HLA-DQ8, supporting its strong role in CD4+ T cell activation. In this work, we probed HLA-X-idiotype-TCR binding and designed enhanced-reactive pHLA-TCR antigens using an in silico mutagenesis approach which we functionally validated by cell proliferation assays and flow cytometry. From a combination of single, double, and swap mutations, we identified antigen-binding sites p4 and p6 as potential mutation sites for HLA binding affinity enhancement. Site p6 is revealed to favor smaller but more hydrophobic residues than the native tyrosine, such as valine (Y6V) and isoleucine (Y6I), indicating a steric mechanism in binding affinity improvement. Meanwhile, site p4 methionine mutation to hydrophobic residues isoleucine (M4I) or leucine (M4L) modestly increases HLA binding affinity. Select p6 mutations to cysteine (Y6C) or isoleucine (Y6I) exhibit favorable TCR binding affinities, while a swap p5-p6 tyrosine-valine double mutant (V5Y_Y6V) and a p6-p7 glutamine-glutamine double mutant (Y6Q_Y7Q) exhibit enhanced HLA binding affinity but weakened TCR affinity. This work holds relevance to potential T1D antigen-based vaccine design and optimization.
KW - autoantigen design
KW - free energy perturbation
KW - molecular dynamics
KW - mutagenesis
KW - type 1 diabetes
UR - http://www.scopus.com/inward/record.url?scp=85152244293&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85152244293&partnerID=8YFLogxK
U2 - 10.1073/pnas.2214430120
DO - 10.1073/pnas.2214430120
M3 - Article
C2 - 37040399
AN - SCOPUS:85152244293
SN - 0027-8424
VL - 120
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 16
M1 - e2214430120
ER -