A microreactor for hydrogen production in micro fuel cell applications

Ashish V. Pattekar, Mayuresh V. Kothare

Research output: Contribution to journalArticlepeer-review

229 Scopus citations


A silicon-chip based microreactor has been successfully fabricated and tested for carrying out the reaction of methanol reforming for microscale hydrogen production. The developed microreactor in combination with a micro fuel cell is proposed as an alternative to conventional portable sources of electricity such as batteries due to its ability to provide an uninterrupted supply of electricity as long as a supply of methanol and water can be provided. The microreformer-fuel cell combination has the advantage of not requiring the tedious recharging cycles needed by conventional rechargeable lithium-ion batteries. It also offers significantly higher energy storage densities, which translates into less frequent "recharging" through the refilling of methanol fuel. The microreactor consists of a network of catalyst-packed parallel microchannels of depths ranging from 200 to 400 μm with a catalyst particle filter near the outlet fabricated using photolithography and deep-reactive ion etching (DRIE) on a silicon substrate. Issues related to microchannel and filter capping, on-chip heating and temperature sensing, introduction and trapping of catalyst particles in the microchannels, flow distribution, microfluidic interfacing, and thermal insulation have been addressed. Experimental runs have demonstrated a methanol to hydrogen molar conversion of at least 85% to 90% at flow rates enough to supply hydrogen to an 8- to 10-W fuel cell.

Original languageEnglish (US)
Pages (from-to)7-18
Number of pages12
JournalJournal of Microelectromechanical Systems
Issue number1
StatePublished - Feb 2004
Externally publishedYes


  • Fuel cell
  • Lab-on-a-chip
  • Micro fuel cells
  • Microfluidics
  • Microreactor
  • Microreformer
  • System-on-chip

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Mechanical Engineering


Dive into the research topics of 'A microreactor for hydrogen production in micro fuel cell applications'. Together they form a unique fingerprint.

Cite this