TY - GEN
T1 - A comparative study of recording procedures for motor evoked potential signals
AU - Agrawal, Gracee
AU - Iyer, Shrivats
AU - All, Angelo H.
PY - 2009/1/1
Y1 - 2009/1/1
N2 - Motor evoked potential (MEP) signals serve as an objective measure of the functional integrity of motor pathways in the spinal cord. Hence, they provide a reliable assessment of the extent of spinal cord injury (SCI). There are two methods currently being used for serial MEP recordings in rats: a low-frequency and a high-frequency method. In this paper, we compared the two methods and determined the better method for MEP recordings. We also compared the effect of two anesthetic agents - inhalational isoflurane and intraperitoneal ketamine - on the MEP signals. We found that under ketamine anesthesia, low-frequency stimulation led to more consistent results, while high-frequency stimulation required greater stimulation intensity and was prone to unwanted side-effects including excessive head twitches. We further found that isoflurane anesthesia severely depressed the MEP response for both low-frequency and high-frequency stimulation which rendered the resulting signal unusable.
AB - Motor evoked potential (MEP) signals serve as an objective measure of the functional integrity of motor pathways in the spinal cord. Hence, they provide a reliable assessment of the extent of spinal cord injury (SCI). There are two methods currently being used for serial MEP recordings in rats: a low-frequency and a high-frequency method. In this paper, we compared the two methods and determined the better method for MEP recordings. We also compared the effect of two anesthetic agents - inhalational isoflurane and intraperitoneal ketamine - on the MEP signals. We found that under ketamine anesthesia, low-frequency stimulation led to more consistent results, while high-frequency stimulation required greater stimulation intensity and was prone to unwanted side-effects including excessive head twitches. We further found that isoflurane anesthesia severely depressed the MEP response for both low-frequency and high-frequency stimulation which rendered the resulting signal unusable.
UR - http://www.scopus.com/inward/record.url?scp=77950977350&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77950977350&partnerID=8YFLogxK
U2 - 10.1109/IEMBS.2009.5333953
DO - 10.1109/IEMBS.2009.5333953
M3 - Conference contribution
C2 - 19964577
AN - SCOPUS:77950977350
SN - 9781424432967
T3 - Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
SP - 2086
EP - 2089
BT - Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
PB - IEEE Computer Society
T2 - 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Y2 - 2 September 2009 through 6 September 2009
ER -